2.3 The Inverse Of a Linear Transformation

Definition. A function T from X to Y is called invertible if the equation $T(x)=y$ has a unique solution x in X for each y in Y.

Denote the inverse of T as T^{-1} from Y to X, and write

$$
T^{-1}(y)=(\text { the unique } x \text { in } X \text { such that } T(x)=y)
$$

Note
$T^{-1}(T(x))=x$, for all x in X, and
$T\left(T^{-1}(y)\right)=y$, for all y in Y.
If a function T is invertible, then so is T^{-1},

$$
\left(T^{-1}\right)^{-1}=T
$$

Consider the case of a linear transformation from R^{n} to R^{m} given by $\vec{y}=A \vec{x}$ where A is an $m \times n$ matrix, the transformation is invertible if the linear system $A \vec{x}=\vec{y}$ has a unique solution.

1. Case 1: $m<n$ The system $A \vec{x}=\vec{y}$ has either no solutions or infinitely many solutions, for any \vec{y} in R^{m}. Therefore $\vec{y}=A \vec{x}$ is noninvertible.
2. Case 2: $m=n$ The system $A \vec{x}=\vec{y}$ has a unique solution iff $\operatorname{rref}(A)=I_{n}$, or equivalently, if $\operatorname{rank}(A)=n$.
3. Case 3: $m>n$ The transformation $\vec{y}=$ $A \vec{x}$ is noninvertible, because we can find a vector \vec{y} in R^{m} such that the system $A \vec{x}=\vec{y}$ is inconsistent.

Definition. Invertible Matrix A matrix A is called invertible if the linear transformation $\vec{y}=$ $A \vec{x}$ is invertible. The matrix of inverse transformation is denoted by A^{-1}. If the transformation $\vec{y}=A \vec{x}$ is invertible. its inverse is $\vec{x}=A^{-1} \vec{y}$.

Fact

An $m \times n$ matrix A is invertible if and only if

1. A is a square matrix (i.e., $m=n$), and
2. $\operatorname{rref}(A)=I_{n}$.

Example. Is the matrix A invertible?

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Solution

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \underset{\substack{-4(I) \\
-7(I)}}{\longrightarrow}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right] \div(-3)} \\
{\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -6 & -12
\end{array}\right] \xrightarrow{-2(I I)}+\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

A fails to be invertible, since $\operatorname{rref}(A) \neq I_{3}$.

Fact Let A be an $n \times n$ matrix.

1. Consider a vector \vec{b} in R^{n}. If A is invertible, then the system $A \vec{x}=\vec{b}$ has the unique solution $\vec{x}=A^{-1} \vec{b}$. If A is noninvertible, then the system $A \vec{x}=\vec{b}$ has infinitely many solutions or none.
2. Consider the special case when $\vec{b}=\overrightarrow{0}$. The system $A \vec{x}=\overrightarrow{0}$. has $\vec{x}=\overrightarrow{0}$ as a solution. If A is invertible, then this is the only solution. If A is noninvertible, then there are infinitely many other solutions.

If a matrix A is invertible, how can we find the inverse matrix A^{-1} ?

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
3 & 8 & 2
\end{array}\right]
$$

or, equivalently, the linear transformation

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{r}
x_{1}+x_{2}+\begin{array}{r}
x_{3} \\
2 x_{1} \\
3 x_{1}+3 x_{2}
\end{array}+2 x_{3}+2 x_{2}+2 x_{3}
\end{array}\right] .
$$

To find the inverse transformation, we solve this system for input variables x_{1}, x_{2}, x_{3} :

$$
\begin{aligned}
& \left\lvert\, \begin{array}{rllll|r}
x_{1}+x_{2}+x_{3} & =y_{1} & & & \\
2 x_{1}+3 x_{2}+2 x_{3} & = & y_{2} & & -2(I) \\
3 x_{1}+8 x_{2}+2 x_{3} & = & & y_{3} & -3(I)
\end{array}\right. \\
& \begin{aligned}
x_{1}+x_{2}+x_{3} & =y_{1} \\
x_{2} & \\
5 x_{2}-3 x_{3} & =-2 y_{1}
\end{aligned}+y_{2}+y_{3}|r| r(\underset{(I I)}{-(I I)} \\
& \begin{array}{rlll|l}
x_{1} & +x_{3} & =3 y_{1} & -y_{2} & \\
& =-2 y_{1} & +y_{2} \\
& x_{2} & & \longrightarrow \\
& -y_{3} & =5 y_{1} & -y_{3} & \div(-1)
\end{array} \\
& \begin{array}{rlrl|l}
x_{1} \quad+x_{3} & =3 y_{1} & -y_{2} \\
& =-2 y_{1} & +y_{2} & \\
x_{2} & -(I I I) \\
x_{3} & =-7 y_{1} & +5 y_{2}-y_{3} & \longrightarrow
\end{array} \\
& \left|\begin{array}{rlll}
x_{1} & & & =10 y_{1}-6 y_{2}+y_{3} \\
& x_{2} & =-2 y_{1}+y_{2} & \\
& x_{3} & =-7 y_{1}+5 y_{2}-y_{3}
\end{array}\right| .
\end{aligned}
$$

We have found the inverse transformation; its matrix is

$$
B=A^{-1}=\left[\begin{array}{rrr}
10 & -6 & 1 \\
-2 & 1 & 0 \\
-7 & 5 & -1
\end{array}\right]
$$

We can write the preceding computations in matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & \vdots & 1 & 0 & 0 \\
2 & 3 & 2 & \vdots & 0 & 1 & 0 \\
3 & 8 & 2 & \vdots & 0 & 0 & 1
\end{array}\right] \underset{ }{-2(I)} \underset{-3(I)}{\longrightarrow}} \\
& {\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & : & 1 & 0 & 0 \\
0 & 1 & 0 & 0_{2} & 1 & 0 \\
0 & 5 & -1 & : & -3 & 0 & 1
\end{array}\right] \underset{-5(I I)}{\underset{(I I)}{\longrightarrow}}} \\
& {\left[\begin{array}{rrr:rrr}
1 & 0 & 1 & \vdots & 3 & -1 \\
0 & 1 & 0 & \vdots & 0 \\
0 & 0 & -1 & \vdots & 7 & -5 \\
0 & 1
\end{array}\right] \underset{(-1)}{\longrightarrow}} \\
& {\left[\begin{array}{rrrrrr}
1 & 0 & 1 & \vdots & 3 & -1 \\
0 & 1 & 0 & \vdots & -2 & 1 \\
0 & 0 & 1 & \vdots & -7 & 5 \\
\hline
\end{array}\right] \xrightarrow{-(I I I)}} \\
& {\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & : & 10 & -6 & 1 \\
0 & 1 & 0 & \vdots & -2 & 1 & 0 \\
0 & 0 & 1 & \vdots & -7 & 5 & -1
\end{array}\right] .}
\end{aligned}
$$

This process can be described succinctly as follows:

Find the inverse of a matrix

To find the inverse of an $n \times n$ matrix A, from the $n \times(2 n)$ matrix $\left[A: I_{n}\right]$ and compute $\operatorname{rref}\left[\begin{array}{lll}A & : & I_{n}\end{array}\right]$.

- If rref $\left[A: I_{n}\right]$ is of the form $\left[I_{n}: B\right]$, then A is invertible, and $A^{-1}=B$.
- If rref $\left[A: I_{n}\right]$ is of another form (i.e., its left half fails to be I_{n}), then A is not invertible. (Note that the left half of rref [$A: I_{n}$] is $\operatorname{rref}(A)$.)

The inverse of a 2×2 matrix is particularly easy to find.

Inverse and determinant of a 2×2 matrix

1. The 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
is invertible if (and only if) $a d-b c \neq 0$. Quantity $\widehat{a d-b c}$ is called the determinant of A, written $\operatorname{det}(A)$:

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c .
$$

2. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible, then

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Compare this with Exercise 2.1.13.
Homework. Exercise 2.3 21-27, 41

