2.2 Linear Transformation in Geometry

Example. 1 Consider a linear transformation system $T(\vec{x}) = A\vec{x}$ from R^n to R^m .

a. $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$

In words, the transformation of the sum of two vectors equals the sum of the transformation.

b.
$$T(k\vec{v}) = kT(\vec{v})$$

In words, the transformation of a scalar multiple of a vector is the scalar multiple of the transform.

See Figure 1 (pp.50).

Fact A transformation T from \mathbb{R}^n to \mathbb{R}^m is linear iff

a. $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$, for all \vec{v} , \vec{w} in R^n , and

b. $T(k\vec{v}) = kT(\vec{v})$, for all \vec{v} in R^n and all scalars k.

Proof

Idea: To prove the inverse, we must show a matrix A such that $T(\vec{x}) = A\vec{x}$. Consider a transformation T from R^n to R^m that satisfy (a) and (b), find A.

Example. 2 Consider a linear transformation T from R^2 to R^2 . The vectors $T\vec{e_1}$ and $T\vec{e_2}$ are sketched in Figure 2. Sketch the **image** of the unit square under this transformation.

See Figure 2. (pp. 51)

Example. 3 Consider a linear transformation T from R^2 to R^2 such that $T(\vec{v}_1) = \frac{1}{2}\vec{v}_1$ and $T(\vec{v}_2) = 2\vec{v}_2$, for the vectors \vec{v}_1 and \vec{v}_2 in Figure 5. On the same axes, sketch $T(\vec{x})$, for the given vector \vec{x} .

See Figure 5. (pp. 52)

[Rotation]

Example. 4 Let T be the counterclockwise rotation through an angle α .

a. Draw sketches to illustrate that T is a linear transformation.

b. Find the matrix of T.

Example. 5 *Give a geometric interpretation of the linear transformation.*

$$T(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \vec{x}$$

Rotation-dilations A matrix with this form

$$\left[\begin{array}{cc}a & -b\\b & a\end{array}\right]$$

denotes a counterclockwise rotation through the angle α followed by a dilation by the factor r where $\tan(\alpha) = \frac{b}{a}$ and $r = \sqrt{a^2 + b^2}$. Geometrically,

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \cos \alpha \\ r \sin \alpha \end{bmatrix}$$

4

[Shears]

Example. 6 Consider the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \vec{x}$$

To understand this transformation, sketch the image of the **unit square**.

Solution The transformation $T(\vec{x}) = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \vec{x}$ is called a *shear* parallel to the x_1 -axis.

Definition. Shear Let L be a line in \mathbb{R}^2 . A linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 is called a shear parallel to L if

a. $T(\vec{v}) = \vec{v}$, for all vectors \vec{v} on L, and

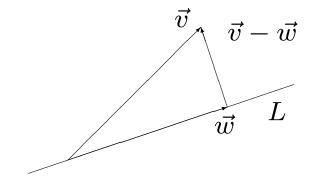
b. $T(\vec{v}) - \vec{v}$ is parallel to L for all vectors $\vec{x} \in \mathbb{R}^2$.

Example. 7 Consider two perpendicular vectors \vec{u} and \vec{w} in R^2 . Show that the transformation

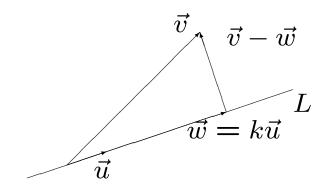
 $T(\vec{x}) = \vec{x} + (\vec{u} \cdot \vec{x})\vec{w}$

is a shear parallel to the line L spanned by \vec{w} .

Consider a line L in R^2 . For any vector \vec{v} in R^2 , there is a unique vector \vec{w} on L such that $\vec{v} - \vec{w}$ is perpendicular to L.



How can we generalize the idea of an orthogonal projection to lines in \mathbb{R}^n ?



7

Definition. orthogonal projection Let *L* be a line in \mathbb{R}^n consisting of all scalar multiples of some unit vector \vec{u} . For any vector \vec{v} in \mathbb{R}^n there is a unique vector \vec{w} on *L* such that $\vec{v} - \vec{w}$ is perpendicular to *L*, namely, $\vec{w} = (\vec{u} \cdot \vec{v})\vec{u}$. This vector \vec{w} is called the orthogonal projection of \vec{v} onto *L*:

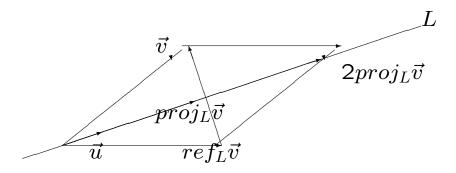
 $proj_L(\vec{v}) = (\vec{u} \cdot \vec{v})\vec{u}$

The transformation $proj_L$ from \mathbb{R}^n to \mathbb{R}^n is linear.

Definition. Let *L* be a line in \mathbb{R}^n , the vector $2(proj_L \vec{v}) - \vec{v}$ is called the **reflection** of \vec{v} in *L*:

 $ref_L(\vec{v}) = 2(proj_L\vec{v}) - \vec{v} = 2(\vec{u}\cdot\vec{v})\vec{u} - \vec{v}$

where \vec{u} is a unit vector on L.



Homework. Exercise 2.2: 1, 9, 13, 17, 27