2.2 Linear Transformation in Geometry

Example. 1 Consider a linear transformation system $T(\vec{x})=A \vec{x}$ from R^{n} to R^{m}.
a. $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$

In words, the transformation of the sum of two vectors equals the sum of the transformation.
b. $T(k \vec{v})=k T(\vec{v})$

In words, the transformation of a scalar multiple of a vector is the scalar multiple of the transform.

See Figure 1 (pp.50).

Fact A transformation T from R^{n} to R^{m} is linear iff
a. $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$, for all \vec{v}, \vec{w} in R^{n}, and
b. $T(k \vec{v})=k T(\vec{v})$, for all \vec{v} in R^{n} and all scalars k.

Proof

Idea: To prove the inverse, we must show a matrix A such that $T(\vec{x})=A \vec{x}$. Consider a transformation T from R^{n} to R^{m} that satisfy (a) and (b), find A.

Example. 2 Consider a linear transformation T from R^{2} to R^{2}. The vectors $T \vec{e}_{1}$ and $T \vec{e}_{2}$ are sketched in Figure 2. Sketch the image of the unit square under this transformation.

See Figure 2. (pp. 51)
Example. 3 Consider a linear transformation T from R^{2} to R^{2} such that $T\left(\vec{v}_{1}\right)=\frac{1}{2} \vec{v}_{1}$ and $T\left(\vec{v}_{2}\right)=2 \vec{v}_{2}$, for the vectors \vec{v}_{1} and \vec{v}_{2} in Figure 5. On the same axes, sketch $T(\vec{x})$, for the given vector \vec{x}.

See Figure 5. (pp. 52)

[Rotation]

Example. 4 Let T be the counterclockwise rotation through an angle α.
a. Draw sketches to illustrate that T is a linear transformation.
b. Find the matrix of T.

Example. 5 Give a geometric interpretation of the linear transformation.

$$
T(\vec{x})=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \vec{x}
$$

Rotation-dilations A matrix with this form

$$
\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

denotes a counterclockwise rotation through the angle α followed by a dilation by the factor r where $\tan (\alpha)=\frac{b}{a}$ and $r=\sqrt{a^{2}+b^{2}}$. Geometrically,

[Shears]

Example. 6 Consider the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right] \vec{x}
$$

To understand this transformation, sketch the image of the unit square.

Solution The transformation $T(\vec{x})=\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 1\end{array}\right] \vec{x}$ is called a shear parallel to the x_{1}-axis.

Definition. Shear Let L be a line in R^{2}. A linear transformation T from R^{2} to R^{2} is called a shear parallel to L if
a. $T(\vec{v})=\vec{v}$, for all vectors \vec{v} on L, and
b. $T(\vec{v})-\vec{v}$ is parallel to L for all vectors $\vec{x} \in R^{2}$.

Example. 7 Consider two perpendicular vectors \vec{u} and \vec{w} in R^{2}. Show that the transformation
$T(\vec{x})=\vec{x}+(\vec{u} \cdot \vec{x}) \vec{w}$
is a shear parallel to the line L spanned by \vec{w}.

Consider a line L in R^{2}. For any vector \vec{v} in R^{2}, there is a unique vector \vec{w} on L such that $\vec{v}-\vec{w}$ is perpendicular to L.

How can we generalize the idea of an orthogonal projection to lines in R^{n} ?

Definition. orthogonal projection Let L be a line in R^{n} consisting of all scalar multiples of some unit vector \vec{u}. For any vector \vec{v} in R^{n} there is a unique vector \vec{w} on L such that $\vec{v}-\vec{w}$ is perpendicular to L, namely, $\vec{w}=(\vec{u} \cdot \vec{v}) \vec{u}$. This vector \vec{w} is called the orthogonal projection of \vec{v} onto L :
$\operatorname{proj}_{L}(\vec{v})=(\vec{u} \cdot \vec{v}) \vec{u}$

The transformation proj_{L} from R^{n} to R^{n} is linear.

Definition. Let L be a line in R^{n}, the vector $2\left(\right.$ proj $\left._{L} \vec{v}\right)-\vec{v}$ is called the reflection of \vec{v} in L :

$$
r e f_{L}(\vec{v})=2\left(\operatorname{proj}_{L} \vec{v}\right)-\vec{v}=2(\vec{u} \cdot \vec{v}) \vec{u}-\vec{v}
$$

where \vec{u} is a unit vector on L.

Homework. Exercise 2.2: 1, 9, 13, 17, 27

