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8.1 SYMMETRIC MATRICES

In chapter 7, we are concerned with when is
a given square matrix A diagonalizable? That
is, when is there an eigenbasis for A7

In geometry, we prefer to work with orthnomal
bases, which raises the question:

For which matrices is there an orthonormal
eigenbasis?



Example 1 If A is orthogonally diagonalizable,
what is the relationship between AL and A?

Solution We have
S71AS =D
or
A=8DS 1 =5DsT

for an orthogonal matrix S and a diagonal D.
Then

Al = (sps! = sp''s?T = spst = A.
We find that A is symmetric.
Fact 8.1.1 Spectral theorem

A matrix A is orthogonally diagonalizable if and
only if A is symmetric (i.e., AT = A).



The set of eigenvalues of a matrix is called the
spectrum of A, and the following description
of the eigenvalues is called a spectral theorem.

THEOREM
The Spectral Theorem For A Symmetric Ma-
trix

e A has n real eigenvalues, counting muti-
plicities. (Fact 8.1.3)

e [ he dimension of the eigenspace for each
eigenvalue X\ equals the algebraic multiplic-
ity of .

e [ he eigenspaces are mutually orthogonal,
in the sense that eigenvectors correspond-
ing to different eigenvalues are orthogonal.
(Fact 8.1.2)

e Aisorthogonally diagonalizable. (Fact8.1.1)
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Example 2 For the symmetric matrix A =

! ; 3 ] find an orthogonal S such that S—1AS

iIs diagonal.

Solution See Figure 1.

e[ 3] a3

" By w]mnl 1‘1



Note that the eigenspaces E3 and Eg are per-
pendicular. (This is no coincidence.) There-
fore, we can find an orthonormal eigenbasis
simply by dividing the given eigenvectors by
their lengths:

. 1 [27 ., 171
-3 [

Define
o= |m o= ]2 1
1 |2 J5 | -1 2
1.4 |30
then ST AS = 0 8]




Fact 8.1.2 Consider a symmetric matrix A. If
U1 and vo are eigenvectors of A with distinct
eigenvalues A1 and X\», then v71-vo, = 0, that is,
U is orthogonal to vy.

Proof We compute the product 41 Av, in two
ways:

° U3 T Av, = '17{0\2’172) = A2(77 - U2)

° U] T Apy, = AT’UQ = (AT 10 = (VN0 10 =
A1 (77 - vz)

Comparing the results, we find

A1 (U1 - U2) = Ao (U7 - U2)
or
(A1 —A2)(71 1) =0

Since A1 # Ao, U1 - Uo must be zero.



Fact 8.1.3 A symmetric n x n matrix A has n
real eigenvalues if they are counted with their
algebraic multiplicites.

Proof of 8.1.3 For those who have studied
Section 7.5. Consider two complex conjugate
eigenvalues ptiq of A with corresponding eigen-
vectors v £ 1w. Compute the product

(7 + iw)! A(T — iw)
in two different ways:
(74 i) AT — i) = (T4 id)" (p — iq) (T — i)
= (p — i) (|9)1* + [|&]*)
(7 4+ i) AT — iw) = (A@ + iw)) ! (T — iw)
= (p+iq) (T+iw) " (5—iw) = (p+iq)(||5]|* 4| %)

Comparing the results, we find that p 4+ iq =
p —1q, SO ¢ = 0, as claimed.

Proof of 8.1.1 Even more technical.



Example 3 For the symmetric matrix

1 1 1]
A=111 1
11 1]

find an orthogonal S such that S—1AS is diag-
onal.

Solution

‘The eigenvalues are 0 and 3, with -
—1 —1 1

Eq = span 1 |, O and F'3 = span | 1
o) 1 1

Note that the two eigenspaces are indeed per-
pendicular to one another (See Figure 2, 3).

We can construct an orthonormal eigenbasis
for A by picking an orthonormal basis of each
eigenspace.

Perform Gram-Schmidt process to the vectors
17 17

1 ,| O

0 1




we find

SR U e
1= —= y U = —= | —
V2| g V6| 5
For E3, we get
1]
V3 = —=
ﬁ_l_

T herefore, the orthogonal matrix

] [ -/V2 -1/VE 1/V3]
S=|v 2 U3 |=] 1/V/2 -1/vV6 1/V3
R R R O 2/vV6 1/V3 |

diagonalizes the matrix

S las =




1
Ey= spanh] o

g

Figure2 The eigenspaces £, and E; are orthogonal Figure 3
complements.



Algorithm 8.1.4 Orthogonal diagonaliza-
tion of a symmetric matrix A

1. Find the eigenvalues of A, and find a basis

of each eigenspace.

2. Using the Gram-Schmidt process, find an
orthonormal basis of each eigenspace.

3. Form an orthonormal eigenbasis u1, u», ..., Un
for A by combining the vectors you find in
the last step, and let

P =

|
U1

— —

P is orthogonal, and P~1AP will be diagonal.
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Spectral Decomposition

Suppose that A = PDP~1, where the columns
of P are orthonormal eigenvectors uq, o, ..., un
of A and the corresponding eigenvalues A1, Ao, ..., A\n,
are in the diagonal matrix D. Then, since

By 0 ][ al]
A=PpPT =4 i |
0 An || @l
P
=M@ - Anin ] | = MEE A iy
_/L—l:n ;

This representation of A is called a spectral de-
composition of A because it breaks up A into
pieces determined by the spectrum (eigenval-
ues) of A. Each term is an n x n matrix of
rank 1. Furthermore, each matrix ﬁjﬁf is a
projection matrix onto the subspace spanned

by ﬁj



Example 4 Consider an invertible symmetric
2 X 2 matrix A. Show that the linear transfor-
mation T (¥ = AZ maps the unit circle into an
ellipse, and find the lengths of the semimajor
and the semiminor axes of the ellipse in terms
of the eigenvalues of A.

Solution

The spectral theorem tells us there is an or-
thonormal eigenbasis ui,uo for 1T, with asso-
ciated real eigenvalues \i1,A>. Suppose that
IA1| > |\2]. These eigenvalues will be nonzero,
since A is invertible. The unit circle consists
of all vectors of the form

v = cos(t)uy + sin(t)uo
. The image of the unit circle will be
T(¥) = cos(t)T (u1) + sin(t)T (up)

= cos(t)Aquq + sin(t) Aouo
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an ellipse whose semimajor axis has the length
|IA1u1|| = |A1], while the length of the semimi-
nor axis is ||Aous|| = |A2|. (See Figure 4).




8.2 Quadratic Forms

Example 1 Consider the function

q(z1,72) = 8x% — dx125 + 525

Determine whether ¢(0,0) is the global mini-
mum.

Solution based on matrix technique
Rewrite

q([ z; ]) — 8:15% —Adxqxo + 5:13%

| > 8xr1 — 2xo
| 2o —2x1 + 5xo

Note that we split the contribution —4xqx-o
equally among the two components.

More succinctly, we can write

-2 5

q(¥) = ¥ - A¥, where A=[ 8 _2]
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or

() = 7L Az

The matrix A is symmetric by construction. By
the spectral theorem, there is an orthonormal
eigenbasis v1,v> for A. We find

B 21 . 11
-] 3] - [

with associated eigenvalues A1 = 9 and \» = 4.

1

—

Let ¥ = c1U1 + covp, We can express the value
of the function as follows:

q(Z) = & AZ = (171 + co92) - (c1A171 + coAp1n)

= )\10% + )\2(3% = 90% + 403

Therefore, ¢q(Z) > 0 for all nonzero Z. ¢(0,0) =
O is the global minimum of the function.



Def 8.2.1 Quadratic forms

A function g(x1,2zo,...,2n) from R™ to R is
called a quadratic form if it is a linear combina-
tion of functions of the form LT ;- A quadratic
form can be written as

() =7 Az = 7L AT

for a symmetric n x n matrix A.

Example 2 Consider the quadratic form

qg(x1,z0,23) = 9:13%—|—7x%—|—3x%—2x1x2—|—4x1m3—6x2m3

Find a symmetric matrix A such that ¢(¥) =
7. AZ for all & in R3.

Solution As in Example 1, we let
a;; = (coefficient of z?),

a;; = 5 (coefficient of z;z;), if i # j.
Therefore,

9 -1 2
A=| -1 7 -3
2 -3 3
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Change of Variables in a Quadratic Form

Fact 8.2.2 Consider a quadratic form ¢(¥) =
x-Ax from R™ to R. Let B be an orthonormal
eigenbasis for A, with associated eigenvalues
Al,...,An. Then

q(T) = At + Aocd + ... 4 Anc2,

where the ¢; are the coordinates of ¥ with re-
spect to B.

Let = = Py, or equivalently, y = P iz =
C1
: |, if change of variable is made in a quadratic

L Cn -
form z1' Az, then

el Ax = (Py)TA(Py) = yTPTAPy = yT(PTAP)y

Since P orghogonally diagonalizes A, the PTAP =
pP~lApP =D.

13



FIGURE 1 Change of yaiabhetn AN

Classifying Quadratic Form

Positive definite quadratic form

If g(Z) > 0 for all nonzero ¥ in R™, we say A is
positive definite.

If q(Z) > 0 for all nonzero ¥ in R", we say A is
positive semidefinite.

If q(¥) takes positive as well as negative values,
we say A is indefinite.

14






Example 3 Consider m x n matrix A. Show
that the function ¢(Z) = ||AZ]||2 is a quadratic
form, find its matrix and determine its definite-
ness.

Solution ¢(%) = (AZ) - (AZ) = (AD)1(AZ) =
AT Az =z (AT AD).

This shows that ¢ is a quadratic form, with
symmetric matrix AT A.

Since ¢(&) = ||AZ||2 > 0 for all vectors & in R",
this quadratic form is positive semidefinite.
Note that ¢(£) = O iff Z is in the kernel of
A. Therefore, the quadratic form is positive
definite iff ker(A) = {0}.

Fact 8.2.4 Eigenvalues and definiteness
A symmetric matrix A is positive definite iff all
its eigenvalues are positive.

The matrix is positive semidefinite iff all of its
eigenvalues are positive or zero.
15



Fact: The Principal Axes Theorem

Let A be an n X n symmetric matrix. Then
there is an orthogonal change of variable, x =
Py, that transforms the quadratic form z{ Ax
into a quadratic form y{ Dy with no cross-product
term.

Principle Axes

When we study a function f(x1,zo,...,zn) from
R™ to R, we are often interested in the solution
of the equation

f(x].axQ)"‘axn) :ka
for a fixed k in R, called the level sets of f.

Example 4 Sketch the curve

8:13% —4x1x0 + 53:% =1

Solution In Example 1, we found that we can
write this equation as

9¢5 4+ 4c5 =1

16



where c¢q and co are the coordinates of x with
respect to the orthonormal eigenbasis

L1 2] . 11
- 3]l

for A = [ _2 _g ] We sketch this ellipse in

The cj-axe and cpo-axe are called the principle
axes Of the quadratic form ¢(xzq1,25) = 8:{:% —
4x1x2—|—5a:§. Note that these are the eigenspaces
of the matrix

NEN

of the quadratic form.



Constrained Optimization

When a quadratic form ) has no cross-product

terms, it is easy to find the maximum and min-

imum of Q(&) for &l 7z = 1.

Example 1 Find the maximum and minimum
values of Q(%) = 9z% + 423 + 3x3 subject to
the constraint ! 7z = 1.

Solution

Q(&) = 927 + 43 + 323 < 9x7 + 923 + 923

=9(zf 4+ 25 +23) =09

whenever z%2 + 23 + 73 = 1. Q(Z) = 9 when
£ = (1,0,0). Similarly,

Q(Z) = 927 + 43 + 323 > 327 + 325 + 323

= 3(xf + 25 +23) = 3

whenever z$ 4+ 25 + 23 = 1. Q(&) = 3 when
7= (0,0,1).
17



THEOREM Let A be a symmetric matrix, and
define

m = min{z’ Az : |} = 1}, M = maz{z’ Az : |} = 1}.

Then M is the greatest eigenvalues A1 of A
and m is the least eigenvalue of A. The value
of z1 Az is M when z is a unit eigenvector uq
corresponding to eigenvalue M. The value of
rl Az is m when z is a unit eigenvector corre-
sponding to m.

Proof

Orthogonally diagonalize A, i.e. PTAP = D
(by change of variable x = Py), we can trans-
form the quadratic form zf' Az = (Py)L A(Py)
into y!' Dy. The constraint ||z|| = 1 implies
lyll = 1 since [|z[|? = ||[Pyl|* = (Py)!'Py =
y! PPy =yl (PTP)y =yly=1.

Arrange the columns of P so that P = [ uq
and Ay > --- > A\p.

18
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Given that any unit vector y with coordinates

C1
. Observe that

y' Dy = Xici 4+ + Aacqy

> A1ef+ -+ Arem = Myl = Mg

Thus xT_Ax has the largest value M = A1 when

1

y=1|1: |, l.e. x = Py =uj.

O

A similar argument show that m is the least

eigenvalue A\, when y =

Un,.

0

, .e. x = Py =



THEOREM Let A, A1 and u1 be as in the last
theorem. Then the maximum value of z1 Ax
subject to the constraints

T

x a:=1,a:T

up =0

is the second greatest eigenvalue, Ao, and this
maximum is attained when x is an eigenvector
uo corresponding to A».

THEOREM Let A be a symmetric n X n ma-
trix with an orthogonal diagonalization A =
PDP~1 where the entries on the diagonal of D
are arranged so that A\q{ > --- > Ap, and where
the columns of P are corresponding unit eigen-
vectors wuq,...,un. Then for kK = 2,...,n, the
maximum value of zl Az subject to the con-
straints

iy = l,acTul = 0, ...,xTuk_l =0

IS the eigenvalue \;, and this maximum is at-
tained when xz = uy.

19



T he Singular Value Decomposition

The absolute values of the eigenvalues of a
symmetric matrix A measure the amounts that
A stretches or shrinks certain the eigenvectors.
If Ax = Az and {2z = 1, then

[Az|| = ||Az|| = [Alllz]| = [A|
based on the diagonalization of A = PDP 1,
The description has an analogue for rectangu-

lar matrices that will lead to the singular value
decomposition A = QDP~ 1.

20



4 11 14
8 7 -2
ear transformation T'(x) = Az maps the unit
sphere {z : ||z|]| = 1} in R3 into an ellipse in R?2
(see Fig. 1). Find a unit vector at which ||Az||
IS maximized.

Example If A = [ ] then the lin-

FIGURE 1 _.'\.||':||:-\.'||||||:|Ii-:l'| ELin L4k 3
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Observe that
[Az|| = (Az)T Az = 2t AT Az = 21 (AT A)z

Also AT A is a symmetric matrix since (AT A)L =
AT ATT = AT A. So the problem now is to max-
imize the quadratic form 21 (AT A)z subject to
the constraint ||z|| = 1.

Compute
4 8 80 100 40
ATA= |11 7 [g b i‘;]: 100 170 140
14 —2 40 140 200

Find the eigenvalues of ATA: X1 = 360, > = 90,3 = 0O,
and the corresponding unit eigenvectors,

1/3 —2/3 2/3
vi=1|2/3 |,vo=| —-1/3 | ,u3=| —2/3
2/3 2/3 1/3

The maximum value of ||Az||? is 360, attained when =z
is the unit vector v;.

22



The Singular VValues of an m x n Matrix

Let A be an m x n matrix. Then AT A is sym-
metric and can be orthogonally diagonalized.
Let {vq,...,vn} De an orthonormal basis for R"
consisting of eigenvectors of AT A, and let A1y ey Any
be the associated eigenvalues of AT A. Then
for 1 <1< mn,

||‘/4’UZ||2 — (A’Ui)TA’UZ' — ‘U;-TATAUZ' — ’U,;r()\z’vz) — )\Z

So the eigenvalues of AT A are all nonnegative.
et

A1 2A22 A 20

The singular values of A are the square roots of
the eigenvalues of AT A, denoted by o1,...,0n.
That is 0; = /\; for 1 < i < n. The singu-
lar values of A are the lengths of the vectors
Avq, ..., Avp,.

23



Example

Let A be the matrix in the last example. Since the
eigenvalues of ATA are 360, 90, and 0, the singular
values of A are

01 =Vv360 =6Vv10,020 =+v90 =3v10,03 =0

Note that, the first singular value of A is the maximum
of ||Ax|| over all unit vectors, and the maximum is at-
tained at the unit eigenvector vi. The second singular
value of A is the maximum of ||Az|| over all unit vectors
that are orthogonal to v, and this maximum is attained
at the second unit eigenvector, vo. Compute

Am:[g 171 Eg] %g :[168]
=37 8] 28 =[ 3]

The fact that Avis and Awv, are orthogonal is no accident,
as the next theorem shows.

24



THEOREM Suppose that {vq,...,vn} iS an or-
thonormal basis of R™ consisting of eigenvec-
tors of AL A, arranged so that the correspond-
ing eigenvalues of AT A satisfy A\{ > Ao > -+ \p,
and suppose that A has r nonzero singular val-
ues. Then {Avq,..., Av;} is an orthogonal basis
for im(A), and rank(A)=r.

Proof Because v; and wv; are orthogonal for
L FE ]

(Avi)T(Aij) = v;-rATAvj = fv;‘;r)\jvj =0
Thus {Avq,..., Av,} is an orthogonal set. Fur-
thermore, Av; = 0O for + > . For any y in
im(A), i.e. y= Ax

y= Az = A(civ1 + -+ cnon)

=c1Avi+ -+ cAv +04---+0

Thus y is in Span{Av1,..., Avr}, which shows
that {Avq,..., Avr}is an (orthogonal) basis for
im(A). Hence rank(A)=dim im(A)=r.

25



8.3 Singular Values

Example 1 Show that if L(Z¥) = AZ is a linear
transformation from R2 to RZ, then there are
two orghogonal unit vectors #; and @ in R2
such that L(#7) and L(v») are orthogonal as
well.

Solution This statement is clear for some classes
of transformation, for example,

1. If L is an orthogonal transformation, then
any two orghogonal unit vectors v; and v»
will do, by Fact 5.3.2.

2. If A is symmetric, then we can choose two
orthogonal unit eigenvectors, by the spec-
tral theorem.

26



However, for an arbitrary linear transformation
L, the statement isn’t that obvious.

Hint: Consider an orthonormal eigenbasis v,
U Oof the symmetric matrix AT A, with asso-
Ciated eigenvalues A1, X\». L(v7) = Av7 and
L(v») = Av> are orthogonal, as claimed:

(AT1) - (ATh) = (AT)T A, = o] AT Av,
= 71 (Aota) = Xp(¥1 - U2) =0

Note that vy, vo need not be eigenvectors of
matrix A.



Example 2 Consider the linear transformation

N A [ 6 2
x)—A:c,vvhereA_[_7 6]'

1. Find an orthonormal basis @1, 9> of R? such
that L(¥7) and L(¥5») are orthogonal.

2. Show that the image of the unit circle un-
der transformation L is an ellipse. Find the
lengths of the two semiaxes of this ellipse,
in terms of the eigenvalues of matrix AT A.

Solution

1. Using the ideas of Example 1

r._[6 -7 6 21 [ 85 -30
AA_[Q 6”—7 6]_[—30 4o]

The characteristic polynormial of AT A is

A2 — 125X\ 4+ 2500 = (A — 100)(\ — 25),

27



so the corresponding eigenspaces are
. 15 30 | 2
Eloo—ker[3o 60]—span[_1],

. —60 30 . 1
E25—ker[ 30 _15 ] —spa,n[2]

For orthonormal basis

a5 2] am5[1)

2. The unit circle consists of the form ¥ = cos(t)v1 +

sin(t)v>, and the image of the unit circle consists of
the form

L(Z) = cos(t)L(v1) + sin(t) L(v>)

The image is the ellipse whose semimajor and semi-
nor axes are ||L(v1)|| and ||L(%2)||:

|L(71)||? = (A1) (Av) = 51 AT Avy = o1 (\v1) = Mt
Likewise,

|L(%2)|]* =
Thus

|1L(7)|| = v/A1 = V100 = 10
1L(72)|| = VX2 =V25 =5



We can also compute L(71) and L(¥>) directly:

L(v1) = Aty = [ B

L(%) = At = [

So that

IL(71)]] = 10, |[L(v2)[| = 5

10
—20

[ 10
5

not to
scale

Image of
the unit
circle:

an ellipse

»

f-(l"|}

|



Definition 8.3.1 Singular values

The singular values Of an m X n matrix A are
the square roots of the eigenvalues of the sym-
metric n x n matrix AT A, listed with their alge-
braic multiplicities. It is customary to denote
the singular values by o1,09,...,0n, and to list
them in decreasing order:

012> 00> ...2 0Op

Fact 8.3.2 The image of the unit circle
Let L(X) = AZ be an invertible linear transfor-
mation from R? to R2. The image of the unit
circle under L is an ellipse E. The lengths of
the semimajor and the seminor axes of E are
the singular values o1, and oo of A, respec-
tively.
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Fact 8.3.3
Let L(¥) = AX be a linear transformation from
R™ to R™. Then there is an orghonormal basis

U1, VUo,...,0n OFf R™ such that
1. vectors L(v7), L(¥>),...,L(vn) are orthogo-
nal, and

2. the lengths of these vectors are the singular
values 01,09, ...,0n Of matrix A.

To construct v1,vs,...,Un, find an orthonormal
eigenbasis for matrix AL A. Make sure that the
corresponding eigenvalues A1, Ao, ..., A\p appear
in descending order:

AL 2 A2 2 ... 2 An

29



Proof

1. L(%;) - L(T;) = (A%) - (A¥;) = (Av;)! A,
= ¢l AT Av;, = vl (\v;) = \(@;-9;) =0
when ¢ % j, and

2. |IL(5)|]2 = (A%) - (A7) = 57 AT Ag;
= 7} (\@;) = N(T; - ) = Ny = 07 > 0,
so that ||L(¥;)]|| = o;.

30



Example 3 Consider the linear transformation

011]

L(:E’)zA:E’,Az[l -

a. Find the singular values of A.

b. Find orthonormal vectors ¥y, ¥, 73, in R3
such that L(v7), L(v>), L(v3) are orthogonal.
c. Sketch and describe the image of the unit
sphere under the transformation L.

Solution
a.

0 1 1
ATa=11 1 [?13]: 1
10 0

The eigenvalues are \; = 3, = 1,3 = 0.
The singular values of A are

0'1:\/)\71:\/5,0'2:\/)\72:170'3:\/)\73:

31



b. Find an orthonormal eigenbasis 91, v, U3,
for AT A:

1 1 1
E3=span{2],E1=span{ 0 ],E():SpanK—l]
1 -1 1

1 1 1
0] U3 = — | —1
1 V3 1

Compute L(#7), L(7v»), L(v3) and check orthog-
onality:

., 173 .11 . _[o
S THESE P

c. T he unit sphere in R3 consists of all vectors
of the form ¥ = cqv1 + covo + 03173, where C% —+
c% -+ c% = 1.

The image of the unit sphere consists of the
vectors

L(Z) = c1 L(V71) + 2 L(72)

where c¢? + ¢35 < 1. The image is the full ellipse
shaded in Figure 3.



Y3 L(x) = AX

=1
(¥}

o)

aj

AUI

Unit sphere
in R3

Figure 3




Example 3 shows that some of the singular
values of a matrix may be zero. Suppose the
singular values o1,05,...,05 are nonzero, while
Og41,0542,-..,0n are zero. Choose eigenbasis
U1,y Usy Uga1,---,0n OF AT A for R*. Note that
|AT;|| = o; = 0 and therefore Av; = 0 for i =
s+1,...,n.

We claim that the vectors Avq,..., Avs form a
basis of the image of A, since any vector in the
image of A can be written as

Af :A(Cl'l_jl+...+65178+...+Cn77n)
— C]_A’l—))]_ —I_ “ . _I_ CsA/l?S

This shows that s = dim(imA) = rank(A).

Fact 8.3.4

If A is an m x n matrix of rank r, then the
singular values o1,05,...,0, are nonzero, while
Op41,---,0n Are Zero.
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Singular Value Decomposition
Fact 8.3.3 can be expressed in terms of a ma-
trix decomposition.

Consider a linear transformation L(¥) = A%
from R"™ to R™, and choose an orthonormal
basis v1,Uo,...,Un asS in Fact 8.3.3. Let r =
rank(A). We know that the vectors
Avq, Avp, ..., Av, are orthogonal and nonzero,
with ||Av]| = o;. We introduce the unit vectors

U1 = iAﬁl, e U = iAﬁr

01 Or

We can write
A’l?i:O'iﬁi for. =1,2,...,r
and

AﬁiZGfOri=r+l,r+2,...,n

33



We can express these equations in matrix form

as follows:
| I |
U1 Ur Ur4a Un
Al | ]
“7
| ] |
| | | |
s i
I R )
| | | 0 ' 0
— B 0'1 i
| . | 0
. u1 Ur  Upr41 Um o
R | | | | 1 0 " 0
U >

The vector space ker(AL) has dimesion m —

r. Let {ﬁr—Fl?ﬁT—l—Q? ..
basis for ker(AL). Then @1, o, ..

orthonormal basis for R™.

., Um} be an orthonormal

., Um fOorm an



Note that V is an orthogonal n x n matrix, U
IS an orthogonal m X m matrix, and 2 is an
m X n matrix whose first » diagonal entries are
o1,0o,...,0r, and all other entries are zero.

Fact 8.3.5 Singular-value decomposition

Any m X n matrix A can be written as

A=Uxv?

where U is an orthogonal m x m matrix; V is
an orthogonal n X n matrix; and 2 is an m X n
matrix whose first r diagonal entries are the
nonzero sigular values o1,05,...,00 Of A, and
all other entries are zero (where r = rank(A)).

Alternatively, this singular value decomposition
can be written as

A=o01U17v] + ...+ orirv,,

where u; and vu; are the columns of U and V,
respectively.



Proof

yohi=]
orthogonal (73

/

o o1l - i}
1 17{%7
. o _’
] T ’U}?j
0 0 I
o177
o | =o1u1v; + ... + opUU,
o,
{ = Uz VT

A l_‘.z (leq:‘

)

[
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Consider a singular value decomposition A =
UXV?T, where

- |
V=|7, ... Op|andU= |4y ... Unm
|

We know that

Av; = oyu; for 1=1,2,...,r
and

AT, =0 for i=r+1,...,n
These equations tell us that

im(A) = span(tuy,...,Ur)

and

ker(A) = span(Uy41,...,Un)

That is, SVD provides us with orthonormal
bases for the kernel and image of A.
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Likewise, we have AL = (v = viy?
or AlU =vxT.

Reading the last equation column by column,
we find that

ATﬁi:O'i’UZ' for 1=1,2,...,r
and
ATﬁizﬁ for 1=r4+1,...,m
As before
im(ATY = span(vy,...,9)
and

ker(Al) = span(ty41,...,Um)

See Figure 5



span (v, | y..... ,:”:,

= ker(A) \
A b
< & %
\ ,/
Spamn ( 1l o _,TI') % // sparn Cida . 7 )
im(A 7" % yd im(.A)
R™ A:mXxXn R™
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Example 5 Find an SVD for A =

=~ O
OrrpE

Solution

1/vV/2 —1/3/2

1/v6 —1/v2 1/v3 ]
1/v6 1/v2 1/v3 |

R

and
V3

> = 0
O

OI—‘O

Check A =UxVT,

Compare with Example 3 where A = [ ? 1 é ]
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Example 1 Consider an m X n matrix A of
rank r, and a singular value decomposition A =
vl Explain how you can express the least-
squares solutions of a system AZ = b as a linear
combinations of the columns vq,...,v, Of V.

Solution Let ¥ = cqv1 + ... + cnvp is a least

squares solution if Ax = 71" c;Av; = Y11 ciou; =
p’l“OjimAg.

We know that proj;,4b = ;7:1(5- u;)u; since
i1,...,4dr iS an orthonormal basis of im(A).
Comparing the coefEicient of w;, we find that
Cio; = l;-ﬁi or ¢; = b(;—t?, for:=1,...,r, while

no condition is imposed on ¢,.41,...,¢cn. There-

fore, the least squares solutions are of the form

T l_)’ i n
—3k — —
=) — Ui+ ) b
i=1 %t 1=r+1
where ¢4 1,...,cn are arbitrary.
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Example 2 Consider an SVD A = UXZV7 of
an m X n matrix A. Show that the columns
of U form an orthonormal eigenbasis for AAT"
What are the associated eigenvalues? What
does your answer tell you about the relation-
ship between the eigenvalues of AT A and AAT.

Solution
AATU = wzvDHw=svhHlv =vzvivstutu
S2H»=

{
—’

27, =1
AATz — ) 07U for 1=1,...,r
i {O for 1=r4+1,....n

The columns of U form an orthonormal eigen-
basis for AAT. The associated eigenvalues are
the squares of the singular values.
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Application to Data Compression

Suppose a satellite transmits a picture con-
taining 1000x 1000 pixels. If the color of each
pixel is digitized, this information can be rep-
resented in a 1000x1000 matrix A.

Suppose we know an SVD

A= O']_’U,]_’Ul + ...+ arurvT

Even if the rank r of the matrix A is large, most
of the singular values will typically be very small
(relatively to o1). If we neglect those, we get a
good approximation A =~ alulvl +.. —I—USusvS :
where s is much smaller than r.

For example, if we choose s = 10, we need to
transmit only the 20 vectors oqu1,...,010U10
and ¥y,...,710 in R1990 that is, 20,000 num-
bers.
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FIGURE 6.5.1 Courtesy Oakridge National Laboratory

Original 176 by 260 Image Rank 5 Approximation to Image
r; - T ol




Application to Information Retrieval

Consider the problem of searching a database
for documents. If there are m possible key
words and a total of n documents. Then the
database can be represented by a m X n matrix
A.

Two of the main problems are polysemy (words
having multiple meanings) and synonymy (mul-
tiple words having the same meaning).

If we think of our database as an approxima-
tion. Some of the entries may contain ex-
traneous components due to polysemy, and
some may miss including components because
of synonymy.

Suppose it were possible to correct for these
problems and come up with a perfect database

matrix P. Let E = A—- P, then A= P+ FE.
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We can think of £ as a matrix representing the
errors.

Latent semantic indexing (LSI)

The idea of LSI is that the lower-rank matrix
may still provide a good approximation to P
and, may actually involve less error.

The lower-rank approximation can be obtained
by truncating the outer product expansion of
the singular value decomposition of A. This is
equivalent to setting

Ogt1 =0g42=...=0n=2~0

and then setting As = USZSVST, the compact
form of the singular value decomposition.

Speedup
The matrix vector multiplication AT(j requires
a total of mn scalar multiplications.



On the other hand, Al = V;x=,Ul, and the
multiplication Al'q = Vs(Zs(UL'7)) requires a
total of s(m 4+ n + 1) scalar multiplications.

Reference
S. J. Leon, Linear algebra with applications,
6th Ed., Prentice Hall. 2002.



Applications to Statistics

Matrix of observations

An example of two-dimensional data is given
by a set of weights and heights of N college
students. Let X, denote the observation vec-
tor in R2 that lists the weight and height of the
7th student. Then, the matrix of observation
has the form

w, wy ... WN
hi ho ... hy
T 1 T
X{ Xo ... Xy

Mean and Covariance

To prepare for principle component analysis,
let | X1 ... Xy ] be a p x N matrix of obser-
vations. The sample mean, M, of the obser-
vation vectors is given by

1
M= (X1 +...+Xn)
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Let
X=X, — M
The columns of the p x N matrix
B=[X X ... Xy

have a zero sample mean, and B is said to be

iN mean-deviation form.

The (sample) covariance matrix iS the p x N
matrix S defined by

1

S = BB

The entries s;; is called the variance of z;.

The total variance Of the data is the sum of
the variances on the diagonal of S, totalvariance =
trace(S).

The entries s;; for i # j is called the covariance
of x; and Zj.



Principle Component Analysis

Assume that the matrix X = | X1 ... Xy |
is already in mean-deviation form. The goal
of principle component analysis is to find an
orthogonal p x p matrix P = [ Uy ... Up } that
determines a change of variable, X = PY, or

K [ Y1
X
| Tp | | Yp |
such that the new variables yi,yo,...,yp are

uncorrelated and are arranged in order of de-
creasing variance.

Let S = =7XX" be the covariance matrix
of X. Since the covariance matrix of ¥ =
Y1 ... Yy |is g7 YYT = A (PTX)(PTX)T =

PTSP. So the desired orthogonal matrix P is
one that makes PSP diagonal.
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Let D be a diagonal matrix with the eigenval-
ues Ai,...,Ap of S on the diagonal, arranged
that A\ > X > ... >2 Ap > 0, and let P be an
orthogonal matrix whose columns are the cor-
responding unit eigenvectors wuy,...,up. Then
PTSP =D and S = PDPT.

‘The unit eigenvectors uq,...,up are called the
principle components Of the data. The first
principle component wu; determines the new
variable y; in the following way. Let ci1,...,¢p
be the entries in uy. Since ui is the first row

of P1 the equation Y = P1T X shows that

— - B T ] — -
Y1 U% ]
Y2 | — | U 8 59)

L Yp | I u% | L%p |

T
y1 = u3 X =c1x1 +cpxo + ...+ cpxp

Thus, y1 is a linear combination of the original
variables x1,x5,...,zp, USing the entries in the
eigenvector u1 as weights.



Reducing the Dimension

Principle component analysis is potentially valu-
able for applications in which most of the vari-
ation in the data is due to variations in only a
few of the new variables, y1,yo,..., yp.

The variance of Y; IS Aj, and the quotient
Aj/trace(S) measures the fraction of the total
variance that is captured by Yj-

Reference
D. C. Lay, Linear algebra and its applications,
2nd Ed. Addison-Wesley, 2000.
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Example The following table lists the weights
and heights of five boys:

Boy| #1 #2 #3 #4 #5
Weight | 120 125 125 135 145
Height| 61 60 64 68 72

First, arrange the data in mean-deviation form.
The sample mean vector is easily seen to be

M = (13O>. Subtract M from the observation

65
vectors and obtain

5_ (10 -5 -5 5 15
—\-4 -5 -1 3 7

Then the sample covariance matrix is

525_1 4 -5 -1 3 7

_1(a00 190\ _ (100 47.5
— 4 \190 100/ ~ (475 25

1 (-10 5 -5 5 15) = 7
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The eigenvalues of S are (to decimal places)

A = 123.02 and A, = 1.98

The unit eigenvector corresponding to A7 is

__{0.900 .
U] = (O.436>' For the size index, set

y = 0.900w + 0.436h

where @ and h are weight and height, respec-
tively, in mean-deviation form. The variance of
this index over the data set is 123.02. Because
the total variance is tr(S)=100+425=125, the
size index accounts for practically all (98.4%)
of the variance of the data.
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