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8.1 SYMMETRIC MATRICES

In chapter 7, we are concerned with when is

a given square matrix A diagonalizable? That

is, when is there an eigenbasis for A?

In geometry, we prefer to work with orthnomal

bases, which raises the question:

For which matrices is there an orthonormal

eigenbasis?
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Example 1 If A is orthogonally diagonalizable,

what is the relationship between AT and A?

Solution We have

S−1AS = D

or

A = SDS−1 = SDST

for an orthogonal matrix S and a diagonal D.

Then

AT = (SDST )T = SDTST = SDST = A.

We find that A is symmetric.

Fact 8.1.1 Spectral theorem

A matrix A is orthogonally diagonalizable if and

only if A is symmetric (i.e., AT = A).
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The set of eigenvalues of a matrix is called the

spectrum of A, and the following description

of the eigenvalues is called a spectral theorem.

THEOREM

The Spectral Theorem For A Symmetric Ma-

trix

• A has n real eigenvalues, counting muti-

plicities. (Fact 8.1.3)

• The dimension of the eigenspace for each

eigenvalue λ equals the algebraic multiplic-

ity of λ.

• The eigenspaces are mutually orthogonal,

in the sense that eigenvectors correspond-

ing to different eigenvalues are orthogonal.

(Fact 8.1.2)

• A is orthogonally diagonalizable. (Fact 8.1.1)
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Example 2 For the symmetric matrix A =[

4 2
2 7

]

, find an orthogonal S such that S−1AS

is diagonal.

Solution See Figure 1.

E3 =

[

2
−1

]

, E8 =

[

1
2

]
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Note that the eigenspaces E3 and E8 are per-

pendicular. (This is no coincidence.) There-

fore, we can find an orthonormal eigenbasis

simply by dividing the given eigenvectors by

their lengths:

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

Define

S =






| |
~v1 ~v2
| |




 =

1√
5

[

2 1
−1 2

]

then S−1AS =

[

3 0
0 8

]



Fact 8.1.2 Consider a symmetric matrix A. If

~v1 and ~v2 are eigenvectors of A with distinct

eigenvalues λ1 and λ2, then ~v1 ·~v2 = 0; that is,

~v2 is orthogonal to ~v1.

Proof We compute the product ~vT
1 A~v2 in two

ways:

• ~vT
1 A~v2 = ~vT

1 (λ2~v2) = λ2(~v1 · ~v2)

• ~vT
1 A~v2 = ~vT

1 AT~v2 = (A~v1)
T~v2 = (λ1~v1)

T~v2 =

λ1(~v1 · ~v2)

Comparing the results, we find

λ1(~v1 · ~v2) = λ2(~v1 · ~v2)

or

(λ1 − λ2)(~v1 · ~v2) = 0

Since λ1 6= λ2, ~v1 · ~v2 must be zero.
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Fact 8.1.3 A symmetric n× n matrix A has n

real eigenvalues if they are counted with their

algebraic multiplicites.

Proof of 8.1.3 For those who have studied

Section 7.5. Consider two complex conjugate

eigenvalues p±iq of A with corresponding eigen-

vectors ~v ± i ~w. Compute the product

(~v + i ~w)TA(~v − i ~w)

in two different ways:

(~v + i ~w)TA(~v − i ~w) = (~v + i ~w)T (p − iq)(~v − i ~w)

= (p − iq)(‖~v‖2 + ‖~w‖2)

(~v + i ~w)TA(~v − i ~w) = (A(~v + i ~w))T (~v − i ~w)

= (p+iq)(~v+i ~w)T (~v−i ~w) = (p+iq)(‖~v‖2+‖~w‖2)
Comparing the results, we find that p + iq =

p − iq, so q = 0, as claimed.

Proof of 8.1.1 Even more technical.
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Example 3 For the symmetric matrix

A =






1 1 1
1 1 1
1 1 1






find an orthogonal S such that S−1AS is diag-

onal.

Solution

The eigenvalues are 0 and 3, with

E0 = span











−1
1
0




 ,






−1
0
1









 and E3 = span






1
1
1






Note that the two eigenspaces are indeed per-

pendicular to one another (See Figure 2, 3).

We can construct an orthonormal eigenbasis

for A by picking an orthonormal basis of each

eigenspace.

Perform Gram-Schmidt process to the vectors





−1
1
0




 ,






−1
0
1
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we find

~v1 =
1√
2






−1
1
0




 , ~v2 =

1√
6






−1
−1
2






For E3, we get

~v3 =
1√
3






1
1
1






Therefore, the orthogonal matrix

S =






| | |
~v1 ~v2 ~v3
| | |




 =






−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3






diagonalizes the matrix A:

S−1AS =






0 0 0
0 0 0
0 0 3










Algorithm 8.1.4 Orthogonal diagonaliza-

tion of a symmetric matrix A

1. Find the eigenvalues of A, and find a basis

of each eigenspace.

2. Using the Gram-Schmidt process, find an

orthonormal basis of each eigenspace.

3. Form an orthonormal eigenbasis ~u1, ~u2, ..., ~un

for A by combining the vectors you find in

the last step, and let

P =






| | |
~u1 ~u2 ... ~un

| | |






P is orthogonal, and P−1AP will be diagonal.
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Spectral Decomposition

Suppose that A = PDP−1, where the columns

of P are orthonormal eigenvectors ~u1, ~u2, ..., ~un

of A and the corresponding eigenvalues λ1, λ2, ..., λn

are in the diagonal matrix D. Then, since

P−1 = PT ,

A = PDPT =
[

~u1 · · · ~un

]






λ1 0
.. .

0 λn











~uT
1...

~uT
n






=
[

λ1~u1 · · · λn~un

]






~uT
1...

~uT
n




 = λ1~u1~uT

1+· · ·+λn~un~uT
n

This representation of A is called a spectral de-

composition of A because it breaks up A into

pieces determined by the spectrum (eigenval-

ues) of A. Each term is an n × n matrix of

rank 1. Furthermore, each matrix ~uj~u
T
j is a

projection matrix onto the subspace spanned

by ~uj.
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Example 4 Consider an invertible symmetric

2 × 2 matrix A. Show that the linear transfor-

mation T (~x = A~x maps the unit circle into an

ellipse, and find the lengths of the semimajor

and the semiminor axes of the ellipse in terms

of the eigenvalues of A.

Solution

The spectral theorem tells us there is an or-

thonormal eigenbasis u1, u2 for T , with asso-

ciated real eigenvalues λ1, λ2. Suppose that

|λ1| > |λ2|. These eigenvalues will be nonzero,

since A is invertible. The unit circle consists

of all vectors of the form

~v = cos(t)u1 + sin(t)u2

. The image of the unit circle will be

T (~v) = cos(t)T (u1) + sin(t)T (u2)

= cos(t)λ1u1 + sin(t)λ2u2
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an ellipse whose semimajor axis has the length

‖λ1u1‖ = |λ1|, while the length of the semimi-

nor axis is ‖λ2u2‖ = |λ2|. (See Figure 4).



8.2 Quadratic Forms

Example 1 Consider the function

q(x1, x2) = 8x2
1 − 4x1x2 + 5x2

2

Determine whether q(0,0) is the global mini-

mum.

Solution based on matrix technique

Rewrite

q(

[

x1
x2

]

) = 8x2
1 − 4x1x2 + 5x2

2

=

[

x1
x2

] [

8x1 − 2x2
−2x1 + 5x2

]

Note that we split the contribution −4x1x2

equally among the two components.

More succinctly, we can write

q(~x) = ~x · A~x, where A =

[

8 −2
−2 5

]
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or

q(~x) = ~xTA~x

The matrix A is symmetric by construction. By

the spectral theorem, there is an orthonormal

eigenbasis ~v1, ~v2 for A. We find

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

with associated eigenvalues λ1 = 9 and λ2 = 4.

Let ~x = c1~v1 + c2~v2, we can express the value

of the function as follows:

q(~x) = ~x ·A~x = (c1~v1+ c2~v2) · (c1λ1~v1+ c2λ2~v2)

= λ1c21 + λ2c22 = 9c21 + 4c22

Therefore, q(~x) > 0 for all nonzero ~x. q(0,0) =

0 is the global minimum of the function.



Def 8.2.1 Quadratic forms

A function q(x1, x2, . . . , xn) from Rn to R is

called a quadratic form if it is a linear combina-

tion of functions of the form xixj. A quadratic

form can be written as

q(~x) = ~x · A~x = ~xTA~x

for a symmetric n × n matrix A.

Example 2 Consider the quadratic form

q(x1, x2, x3) = 9x2
1+7x2

2+3x2
3−2x1x2+4x1x3−6x2x3

Find a symmetric matrix A such that q(~x) =

~x · A~x for all ~x in R3.

Solution As in Example 1, we let

aii = (coefficient of x2
i ),

aij = 1
2 (coefficient of xixj), if i 6= j.

Therefore,

A =






9 −1 2
−1 7 −3
2 −3 3
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Change of Variables in a Quadratic Form

Fact 8.2.2 Consider a quadratic form q(~x) =

~x ·A~x from Rn to R. Let B be an orthonormal

eigenbasis for A, with associated eigenvalues

λ1, . . . , λn. Then

q(~x) = λ1c21 + λ2c22 + . . . + λnc2n,

where the ci are the coordinates of ~x with re-

spect to B.

Let x = Py, or equivalently, y = P−1x =





c1
...

cn




, if change of variable is made in a quadratic

form xTAx, then

xTAx = (Py)TA(Py) = yTPTAPy = yT (PTAP )y

Since P orghogonally diagonalizes A, the P TAP =

P−1AP = D.
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Classifying Quadratic Form

Positive definite quadratic form

If q(~x) > 0 for all nonzero ~x in Rn, we say A is

positive definite.

If q(~x) ≥ 0 for all nonzero ~x in Rn, we say A is

positive semidefinite.

If q(~x) takes positive as well as negative values,

we say A is indefinite.
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Example 3 Consider m × n matrix A. Show

that the function q(~x) = ||A~x||2 is a quadratic

form, find its matrix and determine its definite-

ness.

Solution q(~x) = (A~x) · (A~x) = (A~x)T (A~x) =

~xTATA~x = ~x · (ATA~x).

This shows that q is a quadratic form, with

symmetric matrix ATA.

Since q(~x) = ||A~x||2 ≥ 0 for all vectors ~x in Rn,

this quadratic form is positive semidefinite.

Note that q(~x) = 0 iff ~x is in the kernel of

A. Therefore, the quadratic form is positive

definite iff ker(A) = {~0}.

Fact 8.2.4 Eigenvalues and definiteness

A symmetric matrix A is positive definite iff all

its eigenvalues are positive.

The matrix is positive semidefinite iff all of its

eigenvalues are positive or zero.
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Fact: The Principal Axes Theorem

Let A be an n × n symmetric matrix. Then

there is an orthogonal change of variable, x =

Py, that transforms the quadratic form xTAx

into a quadratic form yTDy with no cross-product

term.

Principle Axes

When we study a function f(x1, x2, . . . , xn) from

Rn to R, we are often interested in the solution

of the equation

f(x1, x2, . . . , xn) = k,

for a fixed k in R, called the level sets of f .

Example 4 Sketch the curve

8x2
1 − 4x1x2 + 5x2

2 = 1

Solution In Example 1, we found that we can

write this equation as

9c21 + 4c22 = 1
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where c1 and c2 are the coordinates of ~x with

respect to the orthonormal eigenbasis

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

for A =

[

8 −2
−2 5

]

. We sketch this ellipse in

Figure 4.

The c1-axe and c2-axe are called the principle

axes of the quadratic form q(x1, x2) = 8x2
1 −

4x1x2+5x2
2. Note that these are the eigenspaces

of the matrix

A =

[

8 −2
−2 5

]

of the quadratic form.



Constrained Optimization

When a quadratic form Q has no cross-product

terms, it is easy to find the maximum and min-

imum of Q(~x) for ~xT~xx = 1.

Example 1 Find the maximum and minimum

values of Q(~x) = 9x2
1 + 4x2

2 + 3x2
3 subject to

the constraint ~xT~xx = 1.

Solution

Q(~x) = 9x2
1 + 4x2

2 + 3x2
3 ≤ 9x2

1 + 9x2
2 + 9x2

3

= 9(x2
1 + x2

2 + x2
3) = 9

whenever x2
1 + x2

2 + x2
3 = 1. Q(~x) = 9 when

~x = (1,0,0). Similarly,

Q(~x) = 9x2
1 + 4x2

2 + 3x2
3 ≥ 3x2

1 + 3x2
2 + 3x2

3

= 3(x2
1 + x2

2 + x2
3) = 3

whenever x2
1 + x2

2 + x2
3 = 1. Q(~x) = 3 when

~x = (0,0,1).
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THEOREM Let A be a symmetric matrix, and
define

m = min{xTAx : ‖~x} = 1}, M = max{xTAx : ‖~x} = 1}.

Then M is the greatest eigenvalues λ1 of A

and m is the least eigenvalue of A. The value

of xTAx is M when x is a unit eigenvector u1

corresponding to eigenvalue M . The value of

xTAx is m when x is a unit eigenvector corre-

sponding to m.

Proof

Orthogonally diagonalize A, i.e. P TAP = D

(by change of variable x = Py), we can trans-

form the quadratic form xTAx = (Py)TA(Py)

into yTDy. The constraint ‖x‖ = 1 implies

‖y‖ = 1 since ‖x‖2 = ‖Py‖2 = (Py)TPy =

yTPTPy = yT (PTP )y = yTy = 1.

Arrange the columns of P so that P =
[

u1 · · · un

]

and λ1 ≥ · · · ≥ λn.
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Given that any unit vector y with coordinates





c1
...

cn




, observe that

yTDy = λ1c21 + · · · + λnc2n

≥ λ1c21 + · · · + λ1c2n = λ1‖y‖ = λ1

Thus xTAx has the largest value M = λ1 when

y =






1
...
0




, i.e. x = Py = u1.

A similar argument show that m is the least

eigenvalue λn when y =






0
...
1




, i.e. x = Py =

un.



THEOREM Let A, λ1 and u1 be as in the last

theorem. Then the maximum value of xTAx

subject to the constraints

xTx = 1, xTu1 = 0

is the second greatest eigenvalue, λ2, and this

maximum is attained when x is an eigenvector

u2 corresponding to λ2.

THEOREM Let A be a symmetric n × n ma-

trix with an orthogonal diagonalization A =

PDP−1, where the entries on the diagonal of D

are arranged so that λ1 ≥ · · · ≥ λn, and where

the columns of P are corresponding unit eigen-

vectors u1, ..., un. Then for k = 2, ..., n, the

maximum value of xTAx subject to the con-

straints

xTx = 1, xTu1 = 0, ..., xTuk−1 = 0

is the eigenvalue λk, and this maximum is at-

tained when x = uk.
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The Singular Value Decomposition

The absolute values of the eigenvalues of a

symmetric matrix A measure the amounts that

A stretches or shrinks certain the eigenvectors.

If Ax = λx and xTx = 1, then

‖Ax‖ = ‖λx‖ = |λ|‖x‖ = |λ|

based on the diagonalization of A = PDP−1.

The description has an analogue for rectangu-

lar matrices that will lead to the singular value

decomposition A = QDP−1.
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Example If A =

[

4 11 14
8 7 −2

]

, then the lin-

ear transformation T (x) = Ax maps the unit

sphere {x : ‖x‖ = 1} in R3 into an ellipse in R2

(see Fig. 1). Find a unit vector at which ‖Ax‖
is maximized.
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Observe that

‖Ax‖ = (Ax)TAx = xTATAx = xT (ATA)x

Also ATA is a symmetric matrix since (ATA)T =

ATATT = ATA. So the problem now is to max-

imize the quadratic form xT (ATA)x subject to

the constraint ‖x‖ = 1.

Compute

ATA =





4 8
11 7
14 −2





[

4 11 14
8 7 −2

]

=





80 100 40
100 170 140
40 140 200





Find the eigenvalues of ATA: λ1 = 360, λ2 = 90, λ3 = 0,
and the corresponding unit eigenvectors,

v1 =





1/3
2/3
2/3



 , v2 =





−2/3
−1/3
2/3



 , v3 =





2/3
−2/3
1/3





The maximum value of ‖Ax‖2 is 360, attained when x
is the unit vector v1.
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The Singular Values of an m × n Matrix

Let A be an m × n matrix. Then ATA is sym-

metric and can be orthogonally diagonalized.

Let {v1, ..., vn} be an orthonormal basis for Rn

consisting of eigenvectors of ATA, and let λ1, ..., λn

be the associated eigenvalues of ATA. Then

for 1 ≤ i ≤ n,

‖Avi‖2 = (Avi)
TAvi = vT

i ATAvi = vT
i (λivi) = λi

So the eigenvalues of ATA are all nonnegative.

Let

λ1 ≥ λ2 ≥ · · ·λn ≥ 0

The singular values of A are the square roots of

the eigenvalues of ATA, denoted by σ1, ..., σn.

That is σi =
√

λi for 1 ≤ i ≤ n. The singu-

lar values of A are the lengths of the vectors

Av1, ..., Avn.
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Example
Let A be the matrix in the last example. Since the
eigenvalues of ATA are 360, 90, and 0, the singular
values of A are

σ1 =
√

360 = 6
√

10, σ2 =
√

90 = 3
√

10, σ3 = 0

Note that, the first singular value of A is the maximum
of ‖Ax‖ over all unit vectors, and the maximum is at-
tained at the unit eigenvector v1. The second singular
value of A is the maximum of ‖Ax‖ over all unit vectors
that are orthogonal to v1, and this maximum is attained
at the second unit eigenvector, v2. Compute

Av1 =

[

4 11 14
8 7 −2

]




1/3
2/3
2/3



 =

[

18
6

]

Av2 =

[

4 11 14
8 7 −2

]




−2/3
−1/3
2/3



 =

[

3
−9

]

The fact that Av1 and Av2 are orthogonal is no accident,
as the next theorem shows.
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THEOREM Suppose that {v1, ..., vn} is an or-

thonormal basis of Rn consisting of eigenvec-

tors of ATA, arranged so that the correspond-

ing eigenvalues of ATA satisfy λ1 ≥ λ2 ≥ · · ·λn,

and suppose that A has r nonzero singular val-

ues. Then {Av1, ..., Avr} is an orthogonal basis

for im(A), and rank(A)=r.

Proof Because vi and vj are orthogonal for

i 6= j,

(Avi)
T (Avj) = vT

i ATAvj = vT
i λjvj = 0

Thus {Av1, ..., Avn} is an orthogonal set. Fur-

thermore, Avi = 0 for i > r. For any y in

im(A), i.e. y = Ax

y = Ax = A(c1v1 + · · · + cnvn)

= c1Av1 + · · · + crAvr + 0 + · · · + 0

Thus y is in Span{Av1, ..., Avr}, which shows

that {Av1, ..., Avr}is an (orthogonal) basis for

im(A). Hence rank(A)=dim im(A)=r.

25



8.3 Singular Values

Example 1 Show that if L(~x) = A~x is a linear

transformation from R2 to R2, then there are

two orghogonal unit vectors ~v1 and ~v2 in R2

such that L(~v1) and L(~v2) are orthogonal as

well.

Solution This statement is clear for some classes

of transformation, for example,

1. If L is an orthogonal transformation, then

any two orghogonal unit vectors ~v1 and ~v2

will do, by Fact 5.3.2.

2. If A is symmetric, then we can choose two

orthogonal unit eigenvectors, by the spec-

tral theorem.
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However, for an arbitrary linear transformation

L, the statement isn’t that obvious.

Hint: Consider an orthonormal eigenbasis ~v1,

~v2 of the symmetric matrix ATA, with asso-

ciated eigenvalues λ1, λ2. L(~v1) = A~v1 and

L(~v2) = A~v2 are orthogonal, as claimed:

(A~v1) · (A~v2) = (A~v1)
TA~v2 = ~vT

1 ATA~v2

= ~vT
1 (λ2~v2) = λ2(~v1 · ~v2) = 0

Note that ~v1, ~v2 need not be eigenvectors of

matrix A.



Example 2 Consider the linear transformation

~x) = A~x, where A =

[

6 2
−7 6

]

.

1. Find an orthonormal basis ~v1, ~v2 of R2 such

that L(~v1) and L(~v2) are orthogonal.

2. Show that the image of the unit circle un-

der transformation L is an ellipse. Find the

lengths of the two semiaxes of this ellipse,

in terms of the eigenvalues of matrix ATA.

Solution

1. Using the ideas of Example 1

ATA =

[

6 −7
2 6

] [

6 2
−7 6

]

=

[

85 −30
−30 40

]

The characteristic polynormial of ATA is

λ2 − 125λ + 2500 = (λ − 100)(λ − 25),
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so the corresponding eigenspaces are

E100 = ker

[

15 30
30 60

]

= span

[

2
−1

]

,

E25 = ker

[

−60 30
30 −15

]

= span

[

1
2

]

For orthonormal basis

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

2. The unit circle consists of the form ~x = cos(t)~v1 +
sin(t)~v2, and the image of the unit circle consists of
the form

L(~x) = cos(t)L(~v1) + sin(t)L(~v2)

The image is the ellipse whose semimajor and semi-
nor axes are ||L(~v1)|| and ||L(~v2)||:

||L(~v1)||2 = (A~v1)(A~v1) = ~vT
1 ATA~v1 = ~vT

1 (λ1~v1) = λ1

Likewise,

||L(~v2)||2 = λ2.

Thus

||L(~v1)|| =
√

λ1 =
√

100 = 10

||L(~v2)|| =
√

λ2 =
√

25 = 5



We can also compute L(~v1) and L(~v2) directly:

L(~v1) = A~v1 =

[

6 2
−7 6

]
1√
5

[

2
−1

]

=
1√
5

[

10
−20

]

L(~v2) = A~v2 =

[

6 2
−7 6

]
1√
5

[

1
2

]

=
1√
5

[

10
5

]

So that

||L(~v1)|| = 10, ||L(~v2)|| = 5

See Figure 2.



Definition 8.3.1 Singular values

The singular values of an m × n matrix A are

the square roots of the eigenvalues of the sym-

metric n×n matrix ATA, listed with their alge-

braic multiplicities. It is customary to denote

the singular values by σ1, σ2, . . . , σn, and to list

them in decreasing order:

σ1 ≥ σ2 ≥ . . . ≥ σn

Fact 8.3.2 The image of the unit circle

Let L(~x) = A~x be an invertible linear transfor-

mation from R2 to R2. The image of the unit

circle under L is an ellipse E. The lengths of

the semimajor and the seminor axes of E are

the singular values σ1, and σ2 of A, respec-

tively.
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Fact 8.3.3

Let L(~x) = A~x be a linear transformation from

Rn to Rm. Then there is an orghonormal basis

~v1, ~v2, . . . , ~vn of Rn such that

1. vectors L(~v1), L(~v2), . . . , L(~vn) are orthogo-

nal, and

2. the lengths of these vectors are the singular

values σ1, σ2, . . . , σn of matrix A.

To construct ~v1, ~v2, . . . , ~vn, find an orthonormal

eigenbasis for matrix ATA. Make sure that the

corresponding eigenvalues λ1, λ2, . . . , λn appear

in descending order:

λ1 ≥ λ2 ≥ . . . ≥ λn
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Proof

1. L(~vi) · L(~vj) = (A~vi) · (A~vj) = (A~vi)
TA~vj

= ~vT
i ATA~vj = ~vT

i (λj~vj) = λj(~vi · ~vj) = 0

when i 6= j, and

2. ||L(~vi)||2 = (A~vi) · (A~vi) = ~vT
i ATA~vi

= ~vT
i (λi~vi) = λi(~vi · ~vi) = λi = σ2

i ≥ 0,

so that ||L(~vi)|| = σi.
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Example 3 Consider the linear transformation

L(~x) = A~x, A =

[

0 1 1
1 1 0

]

a. Find the singular values of A.

b. Find orthonormal vectors ~v1, ~v2, ~v3, in R3

such that L(~v1), L(~v2), L(~v3) are orthogonal.

c. Sketch and describe the image of the unit

sphere under the transformation L.

Solution

a.

ATA =






0 1
1 1
1 0






[

0 1 1
1 1 0

]

=






1 1 0
1 2 1
0 1 1






The eigenvalues are λ1 = 3, λ2 = 1, λ3 = 0.
The singular values of A are

σ1 =
√

λ1 =
√

3, σ2 =
√

λ2 = 1, σ3 =
√

λ3 = 0
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b. Find an orthonormal eigenbasis ~v1, ~v2, ~v3,

for ATA:

E3 = span





1
2
1



 , E1 = span





1
0
−1



 , E0 = span





1
−1
1





~v1 =
1√
6





1
2
1



 , ~v2 =
1√
2





1
0
−1



 , ~v3 =
1√
3





1
−1
1





Compute L(~v1), L(~v2), L(~v3) and check orthog-
onality:

A~v1 =
1√
6

[

3
3

]

, A~v2 =
1√
2

[

−1
1

]

, A~v3 =

[

0
0

]

c. The unit sphere in R3 consists of all vectors

of the form ~x = c1~v1 + c2~v2 + c3~v3, where c21 +

c22 + c23 = 1.

The image of the unit sphere consists of the

vectors

L(~x) = c1L(~v1) + c2L(~v2)

where c21 + c22 ≤ 1. The image is the full ellipse

shaded in Figure 3.





Example 3 shows that some of the singular

values of a matrix may be zero. Suppose the

singular values σ1, σ2, . . . , σs are nonzero, while

σs+1, σs+2, . . . , σn are zero. Choose eigenbasis

~v1, . . . , ~vs, ~vs+1, . . . , ~vn of ATA for Rn. Note that

||A~vi|| = σi = 0 and therefore A~vi = ~0 for i =

s + 1, . . . , n.

We claim that the vectors A~v1, . . . , A~vs form a

basis of the image of A, since any vector in the

image of A can be written as

A~x = A(c1~v1 + . . . + cs~vs + . . . + cn~vn)
= c1A~v1 + . . . + csA~vs

This shows that s = dim(imA) = rank(A).

Fact 8.3.4

If A is an m × n matrix of rank r, then the

singular values σ1, σ2, . . . , σr are nonzero, while

σr+1, . . . , σn are zero.
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Singular Value Decomposition

Fact 8.3.3 can be expressed in terms of a ma-

trix decomposition.

Consider a linear transformation L(~x) = A~x

from Rn to Rm, and choose an orthonormal

basis ~v1, ~v2, . . . , ~vn as in Fact 8.3.3. Let r =

rank(A). We know that the vectors

A~v1, A~v2, . . . , A~vr are orthogonal and nonzero,

with ||A~v|| = σi. We introduce the unit vectors

~u1 =
1

σ1
A~v1, . . . , ~ur =

1

σr
A~vr

We can write

A~vi = σi~ui for i = 1,2, . . . , r

and

A~vi = ~0 for i = r + 1, r + 2, . . . , n
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We can express these equations in matrix form
as follows:

A





| | | |
~v1 . . . ~vr ~vr+1 . . . ~vn

| | | |





︸ ︷︷ ︸

V

=





| | | |
σ1~u1 . . . σr~ur ~0 . . . ~0
| | | |





=





| | | |
~u1 . . . ~ur ~0 . . . ~0
| | | |











σ1
. . .

σr

0

0 0







=





| | | |
~u1 . . . ~ur ~ur+1 . . . ~um

| | | |





︸ ︷︷ ︸







σ1
. . .

σr

0

0 0







︸ ︷︷ ︸

U Σ

The vector space ker(AT ) has dimesion m −
r. Let {~ur+1, ~ur+2, . . . , ~um} be an orthonormal

basis for ker(AT ). Then ~u1, ~u2, . . . , ~um form an

orthonormal basis for Rm.



Note that V is an orthogonal n × n matrix, U

is an orthogonal m × m matrix, and Σ is an

m× n matrix whose first r diagonal entries are

σ1, σ2, . . . , σr, and all other entries are zero.

Fact 8.3.5 Singular-value decomposition

Any m × n matrix A can be written as

A = UΣV T

where U is an orthogonal m × m matrix; V is

an orthogonal n× n matrix; and Σ is an m × n

matrix whose first r diagonal entries are the

nonzero sigular values σ1, σ2, . . . , σr of A, and

all other entries are zero (where r = rank(A)).

Alternatively, this singular value decomposition

can be written as

A = σ1~u1~vT
1 + . . . + σr~ur~v

T
r ,

where ~ui and ~vi are the columns of U and V ,

respectively.



Proof

A = UΣV T

= [ ~u1 . . . ~ur . . . ]









σ1 0
.. .

σr
. . .

0 0















~vT
1
...

~vT
r
...







= [ ~u1 . . . ~ur . . . ]







σ1~vT
1

...
σr~vT

r
...







= σ1~u1~v
T
1 + . . . + σr~ur~v

T
r



Consider a singular value decomposition A =

UΣV T , where

V =






| |
~v1 . . . ~vn

| |




 and U =






| |
~u1 . . . ~um

| |






We know that

A~vi = σi~ui for i = 1,2, . . . , r

and

A~vi = ~0 for i = r + 1, . . . , n

These equations tell us that

im(A) = span(~u1, . . . , ~ur)

and

ker(A) = span(~vr+1, . . . , ~vn)

That is, SVD provides us with orthonormal

bases for the kernel and image of A.
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Likewise, we have AT = (UΣV T )T = V ΣTUT

or ATU = V ΣT .

Reading the last equation column by column,

we find that

AT~ui = σi~vi for i = 1,2, . . . , r

and

AT~ui = ~0 for i = r + 1, . . . , m

As before

im(AT ) = span(~v1, . . . , ~vr)

and

ker(AT ) = span(~ur+1, . . . , ~um)

See Figure 5



Rn A : m × n−−−−−−−→ Rm

~v1 ~u1

im(AT ) ... ... im(A)
= Row(A) ~vr ~ur = Col(A)
−−−− −−− −−−−− −−− −−−−

~vr+1 ~ur+1

ker(A) ... ... ker(AT )
~vn ~um
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Example 5 Find an SVD for A =






0 1
1 1
1 0






Solution

V =

[

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

,

U =






1/
√

6 −1/
√

2 1/
√

3

−2/
√

6 0 −1/
√

3

1/
√

6 1/
√

2 1/
√

3




 ,

and

Σ =






√
3 0

0 1
0 0




 .

Check A = UΣV T .

Compare with Example 3 where A =

[

0 1 1
1 1 0

]

.
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Example 1 Consider an m × n matrix A of

rank r, and a singular value decomposition A =

UΣV T . Explain how you can express the least-

squares solutions of a system A~x = ~b as a linear

combinations of the columns ~v1, . . . , ~vn of V .

Solution Let ~x = c1~v1 + . . . + cn~vn is a least

squares solution if A~x =
∑n

i=1 ciA~vi =
∑r

i=1 ciσi~ui =

projimA
~b.

We know that projimA
~b =

∑r
i=1(

~b · ~ui)~ui since

~u1, . . . , ~ur is an orthonormal basis of im(A).

Comparing the coefficient of ~ui, we find that

ciσi = ~b · ~ui or ci =
~b·~ui
σi

, for i = 1, . . . , r, while

no condition is imposed on cr+1, . . . , cn. There-

fore, the least squares solutions are of the form

~x∗ =
r∑

i=1

~b · ~ui

σi
~vi +

n∑

i=r+1

ci~vi

where cr+1, . . . , cn are arbitrary.
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Example 2 Consider an SVD A = UΣV T of

an m × n matrix A. Show that the columns

of U form an orthonormal eigenbasis for AAT .

What are the associated eigenvalues? What

does your answer tell you about the relation-

ship between the eigenvalues of ATA and AAT .

Solution

AATU = (UΣV T )(UΣV T )TU = UΣV TV ΣTUTU

= UΣΣT

AAT~ui =

{

σ2
i ~ui for i = 1, . . . , r

~0 for i = r + 1, . . . , n

The columns of U form an orthonormal eigen-

basis for AAT . The associated eigenvalues are

the squares of the singular values.
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Application to Data Compression

Suppose a satellite transmits a picture con-

taining 1000×1000 pixels. If the color of each

pixel is digitized, this information can be rep-

resented in a 1000×1000 matrix A.

Suppose we know an SVD

A = σ1~u1~vT
1 + . . . + σr~ur~v

T
r

Even if the rank r of the matrix A is large, most

of the singular values will typically be very small

(relatively to σ1). If we neglect those, we get a

good approximation A ≈ σ1~u1~vT
1 + . . .+σs~us~vT

s ,

where s is much smaller than r.

For example, if we choose s = 10, we need to

transmit only the 20 vectors σ1~u1, . . . , σ10~u10

and ~v1, . . . , ~v10 in R1000, that is, 20,000 num-

bers.
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Application to Information Retrieval

Consider the problem of searching a database

for documents. If there are m possible key

words and a total of n documents. Then the

database can be represented by a m×n matrix

A.

Two of the main problems are polysemy (words

having multiple meanings) and synonymy (mul-

tiple words having the same meaning).

If we think of our database as an approxima-

tion. Some of the entries may contain ex-

traneous components due to polysemy, and

some may miss including components because

of synonymy.

Suppose it were possible to correct for these

problems and come up with a perfect database

matrix P . Let E = A − P , then A = P + E.
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We can think of E as a matrix representing the

errors.

Latent semantic indexing (LSI)

The idea of LSI is that the lower-rank matrix

may still provide a good approximation to P

and, may actually involve less error.

The lower-rank approximation can be obtained

by truncating the outer product expansion of

the singular value decomposition of A. This is

equivalent to setting

σs+1 = σs+2 = . . . = σn = 0

and then setting As = UsΣsV T
s , the compact

form of the singular value decomposition.

Speedup

The matrix vector multiplication AT~q requires

a total of mn scalar multiplications.



On the other hand, AT
s = VsΣsUT

s , and the

multiplication AT
s ~q = Vs(Σs(UT

s ~q)) requires a

total of s(m + n + 1) scalar multiplications.

Reference

S. J. Leon, Linear algebra with applications,

6th Ed., Prentice Hall. 2002.



Applications to Statistics

Matrix of observations

An example of two-dimensional data is given

by a set of weights and heights of N college

students. Let Xj denote the observation vec-

tor in R2 that lists the weight and height of the

jth student. Then, the matrix of observation

has the form
[

w1 w2 . . . wN
h1 h2 . . . hN

]

↑ ↑ ↑
X1 X2 . . . XN

Mean and Covariance

To prepare for principle component analysis,

let
[

X1 . . . XN

]

be a p×N matrix of obser-

vations. The sample mean, M, of the obser-

vation vectors is given by

M =
1

N
(X1 + . . . + XN)
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Let

X̂k = Xk − M

The columns of the p × N matrix

B =
[

X̂1 X̂2 . . . X̂N

]

have a zero sample mean, and B is said to be

in mean-deviation form.

The (sample) covariance matrix is the p × N

matrix S defined by

S =
1

N − 1
BBT

The entries sjj is called the variance of xj.

The total variance of the data is the sum of

the variances on the diagonal of S, totalvariance =

trace(S).

The entries sij for i 6= j is called the covariance

of xi and xj.



Principle Component Analysis

Assume that the matrix X =
[

X1 . . . XN

]

is already in mean-deviation form. The goal

of principle component analysis is to find an

orthogonal p×p matrix P =
[

u1 . . . up

]

that

determines a change of variable, X = PY , or







x1
x2
...

xp








=
[

u1 u2 . . . up

]








y1
y2
...
yp








such that the new variables y1, y2, . . . , yp are

uncorrelated and are arranged in order of de-

creasing variance.

Let S = 1
N−1XXT be the covariance matrix

of X. Since the covariance matrix of Y =
[

Y1 . . . YN

]

is 1
N−1Y Y T = 1

N−1(P
TX)(PTX)T =

PTSP . So the desired orthogonal matrix P is

one that makes P TSP diagonal.
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Let D be a diagonal matrix with the eigenval-

ues λ1, . . . , λp of S on the diagonal, arranged

that λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, and let P be an

orthogonal matrix whose columns are the cor-

responding unit eigenvectors u1, . . . , up. Then

PTSP = D and S = PDP T .

The unit eigenvectors u1, . . . , up are called the

principle components of the data. The first

principle component u1 determines the new

variable y1 in the following way. Let c1, . . . , cp

be the entries in u1. Since uT
1 is the first row

of PT , the equation Y = P TX shows that







y1
y2
...
yp








=









uT
1

uT
2...

uT
p
















x1
x2
...

xp








y1 = uT
1X = c1x1 + c2x2 + . . . + cpxp

Thus, y1 is a linear combination of the original

variables x1, x2, . . . , xp, using the entries in the

eigenvector u1 as weights.



Reducing the Dimension

Principle component analysis is potentially valu-

able for applications in which most of the vari-

ation in the data is due to variations in only a

few of the new variables, y1, y2, . . . , yp.

The variance of yj is λj, and the quotient

λj/trace(S) measures the fraction of the total

variance that is captured by yj.

Reference

D. C. Lay, Linear algebra and its applications,

2nd Ed. Addison-Wesley, 2000.
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Example The following table lists the weights

and heights of five boys:

Boy #1 #2 #3 #4 #5

Weight 120 125 125 135 145

Height 61 60 64 68 72

First, arrange the data in mean-deviation form.

The sample mean vector is easily seen to be

M =

(

130
65

)

. Subtract M from the observation

vectors and obtain

B =

(

−10 −5 −5 5 15
−4 −5 −1 3 7

)

Then the sample covariance matrix is

S =
1

5 − 1

(

−10 −5 −5 5 15
−4 −5 −1 3 7

)











−10 −4
−5 −5
−5 −1
5 3
15 7











=
1

4

(

400 190
190 100

)

=

(

100 47.5
47.5 25

)
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The eigenvalues of S are (to decimal places)

λ1 = 123.02 and λ2 = 1.98

The unit eigenvector corresponding to λ1 is

u1 =

(

0.900
0.436

)

. For the size index, set

y = 0.900ŵ + 0.436ĥ

where ŵ and ĥ are weight and height, respec-

tively, in mean-deviation form. The variance of

this index over the data set is 123.02. Because

the total variance is tr(S)=100+25=125, the

size index accounts for practically all (98.4%)

of the variance of the data.
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