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7.1 DYNAMICAL SYSTEMS AND EIGENVEC-
TORS: AN INTRODUCTORY EXAMPLE

Consider a dynamical system:

x(t + 1) = 0.86x(t) + 0.08y(t)

y(t + 1) = −0.12x(t) + 1.14y(t)

Let

~v(t) =

[
x(t)
y(t)

]

be the state vector of the system at time t.

We can write the matrix equation as

~v(t + 1) = A~v(t)

where

A =

[
0.86 0.08
−0.012 1.14

]

Suppose we know the initial state, we wish to find ~v(t),
for any time t.

Case 1: Suppose ~v(0) =

[
100
300

]

Case 2: Suppose ~v(0) =

[
200
100

]

Case 3: Suppose ~v(0) =

[
1000
1000

]
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Case 1:

~v(1) = A~v(0) =

[
0.86 0.08
−0.012 1.14

] [
100
300

]
=

[
110
330

]

~v(1) = A~v(0) = 1.1~v(0)
~v(2) = A~v(1) = A(1.1~v(0)) = 1.12~v(0)
~v(3) = A~v(2) = A(1.12~v(0)) = 1.13~v(0)
...
~v(t) = 1.1t~v(0)

Case 2:

~v(1) = A~v(0) =

[
0.86 0.08
−0.012 1.14

] [
200
100

]
=

[
180
90

]

~v(1) = A~v(0) = 0.9~v(0)
~v(t) = 0.9t~v(0)

Case 3:

~v(1) = A~v(0) =

[
0.86 0.08
−0.012 1.14

] [
1000
1000

]
=

[
940
1020

]

The state vector ~v(1) is not a scalar multiple
of the initial state ~v(0). We have to look for
another approach.

2



Consider the two vectors

~v1 =

[
100
300

]
and ~v2 =

[
200
100

]

Since the system is linear and

~v(0) =

[
1000
1000

]
= 2~v1 + 4~v2

Therefore,

~v(t) = At~v(0) = At(2~v1+4~v2) = 2At~v1+4At~v2

= 2(1.1)t~v1 + 4(0.9)t~v2

= 2(1.1)t

[
100
300

]
+ 4(0.9)t

[
200
100

]

x(t) = 200(1.1)t + 800(0.9)t

y(t) = 600(1.1)t + 400(0.9)t

Since the terms involving 0.9t approach zero

as t increases, x(t) and y(t) eventually grow by

about 10% each time, and their ratio y(t)/x(t)

approaches 600/200=3.



See Figure 3, The state vector ~x(t) approaches

the line L1, with the slope 3.

Connect the tips of the state vector ~v(i), i =

1,2, ..., t, the trajectory is shown in Figure 4.

Sometimes, we are interested in the state of

the system in the past at times -1, -2, ....

For different ~v(0), the trajectory is different.

Figure 5 shows the trajectory that starts above

L1 and one that starts below L2.

From a mathematical point of view, it is in-

formative to sketch a phase portrait of this

system in the whole c− r-plane (see Figure 6),

even though the trajectories outside the first

quadrant are meaningless in terms of popula-

tion study.
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Eigenvectors and Eigenvalues

How do we find the initial state vector ~v such

that A~v is a scalar multiple of ~v, or

A~v = λ~v,

for some scalar λ?

Definition 7.1.1

Eigenvectors and eigenvalues Consider an

n × n matrix A. A nonzero vector ~v in Rn

is called an eigenvector of A if A~v is a scalar

multiple of ~v, that is, if

A~v = λ~v

for some scalar λ. Note that this scalar λ may

be zero. The scalar λ is called the eigenvalue

associated with the eigenvector ~v.
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EXAMPLE 1

Find all eigenvectors and eigenvalues of the

identity matrix In.

Solution All nonzero vectors in Rn are eigen-

vectors, with eigenvalue 1.

EXAMPLE 2

Let T be the orthogonal projection onto a line

L in R2. Describe the eigenvectors of T geo-

metrically and find all eigenvalues of T .

Solution (See Figure 8.) (a). Any vector ~v on

L is a eigenvector with eigenvalue 1. (b). Any

vector ~w perpendicular to L is a eigenvector

with eigenvalue 0.
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EXAMPLE 3

Let T from R2 to R2 be the rotation in the

plane through an angle of 90◦ in the counter-

clockwise direction. Find all eigenvalues and

eigenvectors of T . (See Figure 9)

Solution There are no eigenvectors and eigen-

values here.

EXAMPLE 4

What are the possible real eigenvalues of an

orthogonal matrix A?

Solution The possible real eigenvalue is 1 or

-1 since orthogonal transformation preserves

length.

6



Dynamical Systems and Eigenvectors

Fact 7.1.3 Discrete dynamical systems
Consider the dynamical system

~x(t + 1) = A~x(t) with ~x(0) = ~x0

Then

~x(t) = At~x0

Suppose we can find a basis ~v1, ~v2, . . . , ~vn of Rn

consisting of eigenvectors of A with

A~v1 = λ1~v1, A~v2 = λ2~v2, . . . , A~vn = λn~vn.

Find the coordinates c1, c2, . . . , cn of vector ~x0
with respect to ~v1, ~v2, . . . , ~vn of Rn:

~x(0) = c1~v1 + c2~v2 + · · ·+ cn~vn.

=
[

~v1 ~v2 . . . ~vn

]



c1
c2
.

cn
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Let S =



| | |

~v1 ~v2 . . . ~vn

| | |


.

Then ~x0 = S




c1
c2
.

cn


 so that




c1
c2
.

cn


 = S−1~x0.

Consider

~x(t) = c1λt
1~v1 + c2λt

2~v2 + · · ·+ cnλt
n~vn.

We can write this equation in matrix form as

~x(t) =



| | |

~v1 ~v2 . . . ~vn

| | |







λt
1 0 . 0
0 λt

2 0 0
. . . .
0 0 0 λt

n







c1
c2
.

cn




= S




λ1 0 . 0
0 λ2 0 0
. . . .
0 0 0 λn




t

S−1~x0



Definition 7.1.4

Discrete trajectories and phase portraits

Consider a discrete dynamical system

~x(t + 1) = A~x(t)

with initial value ~x(0) = ~x0 where A is a 2× 2

matrix. In this case, the state vector ~x(t) =[
x1(t)
x2(t)

]
can be represented geometrically in

the x1 − x2-plane.

The endpoints of state vectors ~x(0) = ~x0, ~x(1) =

A~x0, ~x(2) = A2~x0, . . . form the (discrete) tra-

jectory of this system, representing its evo-

lution in the future. Sometimes we are in-

terested in the past states ~x(−1) = A−1~x0,

~x(−2) = (A2)−1~x0, . . . as well. It is suggestive

to ”connect the dots” to create the illusion of

a continuous trajectories. Take another look

at Figure 4.
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A (discrete) phase portrait of the system ~x(t+

1) = A~x(t) shows discrete trajectories for vari-

ous initial states, capturing all the qualitatively

different scenarios (as in Figure 6).

See Figure 11, we sketch phase portraits for

the case when A has two eigenvalues λ1 > λ2 >

0. (Leave out the special case when one of

the eigenvalues is 1.) Let L1 = span(~v1) and

L2 = span(~v2). Since

~x(t) = c1λt
1~v1 + c2λt

2~v2

we can sketching the trajectories for the fol-

lowing cases:

(a) λ1 > λ2 > 1

(b) λ1 > 1 > λ2

(c) 1 > λ1 > λ2



Summary 7.1.4

Consider an n× n matrix


| | |

~v1 ~v2 · · · ~vn

| | |




Then the following statements are equivalent:

i. A is invertible.

ii. The linear system A~x = ~b has a unique

solution ~x, for all ~b for all ~b in Rn.

iii. rref(A) = In.

iv. rank(A) = n.

v. im(A) = Rn.

vi. ker(A) = {~0}.
vii. The ~vi are a basis of Rn.

viii. The ~vi span Rn.

ix. The ~vi are linearly independent.

x. det(A) 6= 0.

xi. 0 fails to be an eigenvalue of A.
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7.2 FINDING THE EIGENVALUES OF A

MATRIX

Consider an n× n matrix A and a scalar λ. By

definition λ is an eigenvalue of A if there is a

nonzero vector ~v in Rn such that

A~v = λ~v

λ~v −A~v = ~0

(λIn −A)~v = ~0

An an eigenvector, ~v needs to be a nonzero

vector. By definition of the kernel, that

ker(λIn −A) 6= {~0}.
(That is, there are other vectors in the kernel

besides the zero vector.)

Therefore, the matrix λIn−A is not invertible,

and det(λIn −A)=0.
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Fact 7.2.1 Consider an n× n matrix A and a

scalar λ. Then λ is an eigenvalue of A if (and

only if) det(λIn −A) = 0

λ is an eigenvalue of A.

m
There is a nonzero vector ~v such that A~v = λ~v

or (λIn −A)~v = ~0.

m
ker(λIn −A) 6= {~0}.

m
λIn −A is not invertible.

m
det(λIn −A) = 0
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EXAMPLE 1 Find the eigenvalues of the ma-

trix

A =

[
1 2
4 3

]
.

Solution

By Fact 7.2.1, we have to solve the equation

det(λI2 −A)=0:

det(λI2 −A) = det

([
λ 0
0 λ

]
−

[
1 2
4 3

])

= det

[
λ− 1 −2
−4 λ− 3

]

= (λ− 1)(λ− 3)− 8

= λ2 − 4λ− 5

= (λ− 5)(λ + 1) = 0

The matrix A have two eigenvalues 5 and -1.
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EXAMPLE 2 Find the eigenvalues of

A =




1 2 3 4 5
0 2 3 4 5
0 0 3 4 5
0 0 0 4 5
0 0 0 0 5




.

Solution

Again, we have to solve the equation det(λI5−
A)=0:

det(λI5−A) =




λ− 1 −2 −3 −4 −5
0 λ− 2 −3 −4 −5
0 0 λ− 3 −4 −5
0 0 0 λ− 4 −5
0 0 0 0 λ− 5




= (λ− 1)(λ− 2)(λ− 3)(λ− 4)(λ− 5) = 0

There are five eigenvalues 1, 2, 3, 4, and 5 for

matrix A.

Fact 7.2.2 The eigenvalues of a triangular

matrix are its diagonal entries.
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The eigenvalues of an n× n matrix A as zeros

of the function

fA(λ) = det(λIn −A).

EXAMPLE 3 Find fA(λ) for the 2× 2 matrix

A =

[
a b
c d

]
.

Solution

fA(λ) = det(λI2 −A) = det

[
λ− a −b
−c λ− d

]

= λ2 − (a + d)λ + (ad− bc)

The constant term is det(A). Why? Because

the constant term is fA(0)=det(0I2−A)=det(−A)

=det(A).

Meanwhile, the coefficient of λ is the negative

of the sum of the diagonal entries of A. Since

the sum is important in many other contexts,

we introduce a name for it.
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Definition 7.2.3 Trace

The sum of the diagonal entries of an n × n

matrix A is called the trace of A, denoted by

tr(A).

Fact 7.2.4 If A is a 2× 2, then

fA(λ) = det(λI2 −A) = λ2 − tr(A)λ + det(A)

For the matrix A =

[
1 2
4 3

]
, we have tr(A)=4

and det(A)=-5, so that

fA(λ) = λ2 − 4λ− 5.

What is the format of fA(λ) for an n×n matrix

A?

fA(λ) = λn − tr(A)λn−1+(a polynomial of

degree ≤ (n− 2)).

The constant term of this polynomial is fA(0) =

det(−A) = (−1)ndet(A).
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Fact 7.2.5 Characteristic polynomial

Consider an n × n matrix A. Then fA(λ) =

det(λIn−A) is a polynomial of degree n of the

form

fA(λ) = λn − tr(A)λn−1 + · · ·+ (−1)ndet(A)

fA(λ) is called the characteristic polynomial of

A

From elementary algebra, a polynomial of de-

gree n has at most n zeros. If n is odd,

lim

λ→∞
fA(λ) = ∞ and

lim

λ→−∞
fA(λ) = −∞.

See Figure 1.
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EXAMPLE 4 Find the eigenvalues of

A =




1 2 3 4 5
0 2 3 4 5
0 0 1 2 3
0 0 0 2 3
0 0 0 0 1




.

Solution

Since fA(λ) = (λ−1)3(λ−2)2, the eigenvalues
are 1 and 2. Since 1 is a root of multiplic-
ity 3 of the characteristic polynomial, we say
that the eigenvalue 1 has algebraic multiplic-

ity 3. Likewise, the eigenvalue 2 has algebraic
multiplicity 2.

Definition 7.2.6

Algebraic multiplicity of an eigenvalue We
say that an eigenvalue λ0 of a square matrix A

has algebraic multiplicity k if

fA(λ) = (λ− λ0)
kg(λ)

for some polynomial g(λ) with g(λ0) 6= 0 (i.e.,if
λ0 is a root of multiplicity k of fA(λ)).
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EXAMPLE 5 Find the eigenvalues of

A =




2 −1 −1
−1 2 −1
−1 −1 2




with their algebraic multiplicities.

Solution

fA(λ) = det




λ− 2 1 1
1 λ− 2 1
1 1 λ− 2




= (λ− 2)3 + 2− 3(λ− 2) = (λ− 3)2λ

We found two distinct eigenvalues, 3 and 0,
with algebraic multiplicities 2 and 1, respec-
tively.

Fact 7.2.7 An n × n matrix has at most n

eigenvalues, even if they are counted with their
algebraic multiplicities.

If n is odd, then an n × n matrix has at least
one eigenvalue.
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EXAMPLE 6 Describe all possible cases for
the number of real eigenvalues of a 3× 3 ma-
trix and their algebraic multiplicities. Give an
example in each case and graph the character-
istic polynomial.

Solution
Case 1: See Figure 3.

A =




1 0 0
0 2 0
0 0 3


 , fA(λ) = (λ− 1)(λ− 2)(λ− 3).

Case 2: See Figure 4.

A =




1 0 0
0 1 0
0 0 2


 , fA(λ) = (λ− 1)2(λ− 2).

Case 3: See Figure 5.

A = I3, fA(λ) = (λ− 1)3.

Case 4: See Figure 6.

A =




1 0 0
0 0 −1
0 1 0


 , fA(λ) = (λ− 1)(λ2 + 1).
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It is usually impossible to find the exact eigen-

value of a matrix. To find approximations for

the eigenvalues, you could graph the charac-

teristic polynomial. The graph may give you

an idea of the number of eigenvalues and their

approximate values. Numerical analysts tell us

that this is not a very efficient way to go; other

techniques are used in practice. (See Exercise

7.5.33 for an example; another approach uses

QR factorization.)

Exercises 7.2: 3, 5, 9, 11, 18, 20, 25
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7.3 FINDING THE EIGENVECTORS OF
A MATRIX

After we have found an eigenvalue λ of an n×n

matrix A, we have to find the vectors ~v in Rn

such that

A~v = λ~v or (λIn −A)~v = ~0

In other words, we have to find the kernel of
the matrix λIn −A.

Definition 7.3.1 Eigenspace
Consider an eigenvalue λ of an n × n matrix
A.Then the kernel of the matrix λIn−A is called
the eigenspace associated with λ, denoted by
Eλ:

Eλ = ker(λIn −A)

Note that Eλ consists of all solutions ~v of the
linear system

A~v = λ~v
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EXAMPLE 1 Let T (~x) = A~v be the orthogo-

nal projection onto a plane E in R3. Describe

the eigenspaces geometrically.

Solution See Figure 1.

The nonzero vectors ~v in E are eigenvectors

with eigenvalue 1. Therefore, the eigenspace

E1 is just the plane E.

Likewise, E0 is simply the kernel of A (A~v = ~0);

that is, the line E⊥ perpendicular to E.
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EXAMPLE 2 Find the eigenvectors of the

matrix A =

[
1 2
4 3

]
.

Solution

See Section 7.2, Example 1, we saw the eigen-

values are 5 and -1. Then

E5 = ker(5I2 −A) = ker

[
4 −2

−4 2

]

= ker

[
4 −2
0 0

]
= span

[
2
4

]
= span

[
1
2

]

E−1 = ker(−I2 −A) = ker

[
−2 −2
−4 −4

]

= span

[
2

−2

]
= span

[
1

−1

]

Both eigenspaces are lines, See Figure 2.
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EXAMPLE 3 Find the eigenvectors of

A =




1 1 1
0 0 1
0 0 1


 .

Solution
Since

fA(λ) = λ(λ− 1)2

the eigenvalues are 1 and 0 with algebraic mul-
tiplicities 2 and 1.

E1 = ker




0 −1 −1
0 1 −1
0 0 0




To find this kernel, apply Gauss-Jordan Elimi-
nation:




0 −1 −1
0 1 −1
0 0 0


 rref−−→




0 1 1
0 0 1
0 0 0




The general solution of the system
∣∣∣∣∣

x2 = 0
x3 = 0

∣∣∣∣∣
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is 


x1
0
0


 = x1




1
0
0




Therefore,

E1 = span




1
0
0




Likewise, compute the E0:

E0 = span




1
−1
0




Both eigenspaces are lines in the x1-x2-plane,

as shown in Figure 3.

Compare with Example 1. There, too, we

have two eigenvalues 1 and 0, but one of the

eigenspace, E1, is a plane.



Definition 7.3.2 Geometric multiplicity

Consider an eigenvalue λ if a matrix A. Then
the dimension of eigenvalue Eλ = ker(λIn−A)
is called the geometric multiplicity of eigenvalue
λ. Thus, the geometric multiplicity of λ is the
nullity of matrix λIn −A.

Example 3 shows that the geometric multiplic-
ity of an eigenvalue may be different from the
algebraic multiplicity. We have

(algebraic multiplicity of eigenvalue 1)=2,

but

(geometric multiplicity of eigenvalue 1)=1.

Fact 7.3.3

Consider an eigenvalue λ of a matrix A. Then

(geometric multiplicity of λ)≤
(algebraic multiplicity of λ).
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EXAMPLE 4 Consider an upper triangular
matrix of the form

A =




1 • • • •
0 2 • • •
0 0 4 • •
0 0 0 4 •
0 0 0 0 4




.

What can you say about the geometric multi-
plicity of the eigenvalue 4?

Solution

E4 =




3 • • • •
0 2 • • •
0 0 0 • •
0 0 0 0 •
0 0 0 0 0




rref−−→




1 • • • •
0 1 • • •
0 0 0 ] •
0 0 0 0 ]
0 0 0 0 0




The bullets on row 3 and 4 could be leading
1’s. Therefore, the rank of this matrix will be
between 2 and 4, and its nullity will be between
3 and 1. We can conclude that the geometric
multiplicity of the eigenvalue 4 is less than the
algebraic multiplicity.
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Recall Fact 7.1.3, such a basis deserves a name.

Definition 7.3.4 Eigenbasis
Consider an n× n matrix A. A basis of Rn

consisting of eigenvectors of A is called an
eigenbasis for A.

Example 1 Revisited: Projection on a plane
E in R3. Pick a basis ~v1, ~v2 of E and a nonzero
~v3 in E⊥. The vectors ~v1, ~v2, ~v3 form an eigen-
basis. See Figure 4.

Example 2 Revisited: A =

[
1 2
4 3

]
.

The vectors

[
1
2

]
and

[
1
−1

]
form an eigenba-

sis for A, see Figure 5.

Example 3 Revisited: A =




1 1 1
0 0 1
0 0 1


.

There are not enough eigenvectors to form an
eigenbasis. See Figure 6.
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EXAMPLE 5 Consider a 3× 3 matrix A with

three eigenvalues, 1, 2, and 3. Let ~v1, ~v2, and

~v3 be corresponding eigenvectors. Are vectors

~v1, ~v2, and ~v3 necessarily linearly independent?

Solution See Figure 7.

Consider the plane E spanned by ~v1, and ~v2.

We have to examine ~v3 can not be contained

in this plane.

Consider a vector ~x = c1 ~v1 + c2 ~v2 in E (with

c1 6= 0 and c2 6= 0). Then A~x = c1A~v1 +

c2A~v2 = c1 ~v1 + 2c2 ~v2. This vector can not

be a scalar multiple of ~x; that is, E does not

contain any eigenvectors besides the multiples

of ~v1 and ~v2; in particular, ~v3 is not contained

in E.
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Fact 7.3.5 Considers the eigenvectors ~v1, ~v2,
. . ., ~vm of an n×n matrix A, with distinct eigen-
values λ1, λ2, . . ., λm. Then the ~vi are linearly
independent.

Proof
We argue by induction on m. Assume the claim
holds for m− 1. Consider a relation

c1~v1 + · · ·+ cm−1~vm−1 + cm~vm = ~0

• apply the transformation A to both sides:

c1λ1~v1 + · · ·+ cm−1λm−1~vm−1 + cmλm~vm = ~0

• multiply both sides by λm:

c1λm~v1 + · · ·+ cm−1λm~vm−1 + cmλm~vm = ~0

Subtract the above two equations:

c1(λ1−λm)~v1+ · · ·+cm−1(λm−1−λm)~vm−1 = ~0

Since ~v1, ~v2, . . ., ~vm−1 are linearly independent
by induction, ci(λi−λm) = 0, for i = 1, ..., m−1.
The eigenvalues are assumed to be distinct;
therefore λi − λm 6= 0, and ci = 0. The first
equation tells us that cm~vm = ~0, so that cm = 0
as well.
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Fact 7.3.6 If an n× n matrix A has n distinct

eigenvalues, then there is an eigenbasis for A.

We can construct an eigenbasis by choosing

an eigenvector for each eigenvalue.

EXAMPLE 6 Is there an eigenbasis for the

following matrix?

A =




1 2 3 4 5 6
0 2 3 4 5 6
0 0 3 4 5 6
0 0 0 4 5 6
0 0 0 0 5 6
0 0 0 0 0 6




Fact 7.3.7 Consider an n× n matrix A. If the

geometric multiplicities of the eigenvalues of A

add up to n, then there is an eigenbasis for A:

We can construct an eigenbasis by choosing a

basis of each eigenspace and combining these

vectors.
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Proof

Suppose the eigenvalues are λ1, λ2, ..., λm,

with dim(Eλi
)=di. We first choose a basis ~v1,

~v2, ..., ~vd1
of Eλ1

, and then a basis ~vd1+1, ...,

~vd1+d2
of Eλ2

, and so on.

Consider a relation

c1~v1 + · · ·+ cd1
~vd1︸ ︷︷ ︸+ · · ·+ cd1+d2

~vd1+d2︸ ︷︷ ︸+ · · ·+ · · ·+ cn~vn︸ ︷︷ ︸ = ~0

~w1 in Eλ1
~w2 in Eλ2

~wm in Eλm

Each under-braced sum ~wi must be a zero vec-

tor since if they are nonzero eigenvectors, they

must be linearly independent and the relation

can not hold.

Because ~w1 = 0, it follows that c1 = c2 = · · · =
cd1

= 0, since ~v1, ~v2, ..., ~vd1
are linearly inde-

pendent. Likewise, all the other cj are zero.



EXAMPLE 7 Consider an Albanian mountain

farmer who raises goats. This particular breed

of goats has a life span of three years. At

the end of each year t, the farmer conducts a

census of his goats. He counts the number of

young goats j(t) (those born in the year t), the

middle-aged ones m(t) (born the year before),

and the old ones a(t) (born in the year t− 2).

The state of the herd can be represented by

the vector

~x(t) =




j(t)
m(t)
a(t)




How do we expect the population to change

from year to year? Suppose that for this breed

and environment the evolution of the system

can be modelled by

~x(t + 1) = A~x(t)

where A =




0 0.95 0.6
0.8 0 0
0 0.5 0
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We leave it as an exercise to interpret the en-

tries of A in terms of reproduction rates and

survival rates.

Suppose the initial populations are j0 = 750

and m0 = a0 = 200.What will the popula-

tions be after t years, according to this model?

What will happen in the long term?

Solution

Step 1: Find eigenvalues.

Step 2: Find eigenvectors.

Step 3: Express the initial vector ~v0 =




750
200
200




as a linear combination of eigenvectors.

Step 4: Write the closed formula for ~v(t).



Fact 7.3.8

The eigenvalues of similar matrices Sup-

pose matrix A is similar to B. Then

1. Matrices A and B have the same charac-

teristic polynomial; that is, fA(λ) = fB(λ)

2. rank(A) =rank(B) and nullity(A) =nullity(B)

3. Matrices A and B have the same eigenval-

ues, with the same algebraic and geomet-

ric multiplicities. (However,the eigenvec-

tors need not be the same.)

4. det(A)=det(B) and tr(A)=tr(B)
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Proof

a. If B = S−1AS, then

fB(λ) = det(λIn −B) = det(λIn − S−1AS)

= det(S−1(λIn−A)S)= det(S−1)det(λIn−A)det(S)

= det(λIn −A) = fA(λ)

b. See Section 3.4, exercise 45 and 46.

c. If follows from part (a) that matrices A

and B have the same eigenvalues, with the

same algebraic multiplicities. As for for the

geometric multiplicities, note that λIn − A is

similar to λIn−B for all λ, so that nullity(λIn−
A)=nullity(λIn −B) by part (b).

d. These equations follow from part (a) and

Fact 7.2.5. Trance and determinant are coef-

ficients of the characteristic polynomial.



7.4 Diagonalization

Fact 7.4.1 The matrix of a linear trans-
formation with respect to an eigenbasis is
diagonal
Consider a transformation T~x = A~x, where A
is an n × n matrix. Suppose B is an eigenba-
sis for T consisting of vectors ~v1, ~v2, ..., ~vn, with
A~vi = λi~vi. Then the B-matrix D of T is

D = S−1AS =




λ1 0 . 0
0 λ2 . 0
. . . .
0 0 0 λn




Here

S =



| | |

~v1 ~v2 ... ~vn

| | |




~x
A
−→ A~x

S ↑ ↑ S
[

~x
]
S

−→
D

[
A~x

]
S

~x = S
[

~x
]
S

[
~x

]
S

= S−1~x
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Def 7.4.2 Diagonalizable matrices

An n × n matrix A is called diagonalizable if

A is similar to a diagonal matrix D, that is, if

there is an invertible n× n matrix S such that

D = S−1AS is diagonal.

Fact 7.4.3

Matrix A is diagonalizable iff there is an eigen-

basis for A. In particular, if an n× n matrix A

has n distinct eigenvalues, then A is diagonal-

izable.
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Alg 7.4.4 Diagonalization

Suppose we are asked to decide whether a

given n × n matrix A is diagonalizable, if so,

to find an invertible matrix S such that S−1AS

is diagonal. We proceed as follows:

1. Find the eigenvalues of A, i.e., solve f(λ) =

det(λIn −A) = 0.

2. For each eigenvalue λ, find a basis of the

eigenspace Eλ = ker(λIn −A).

3. A is diagonalizable iff the dimensions of

the eigenspaces add up to n. In this case,

we find an eigenbasis ~v1, ~v2, ..., ~vn for A by

combining the bases of the eigenspaces.

Let S =
[

~v1 ~v2 ... ~vn

]
, then the matrix

S−1AS is a diagonal matrix.
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Example Diagonalize the matrix



1 1 1
0 0 0
0 0 0




Solution

a. The eigenvalues are 0 and 1.

b. E0 = ker(A) = span(



−1
1
0


 ,



−1
0
1


)

and E1 = ker(I3 −A) = span




1
0
0




c. If we let

S =



−1 −1 1
1 0 0
0 1 0




then

D = S−1AS =




0 0 0
0 0 0
0 0 1






Alg 7.4.5 Powers of a diagonalizable ma-

trix

To compute the powers At of a diagonalizable

matrix A (where t is a positive integer), pro-

ceed as follows:

1. Use Alg 7.4.4 to diagonalize A, i.e. find S

such that S−1AS = D.

2. Since A = SDS−1, At = SDtS−1.

3. To compute Dt, raise the diagonal entries

of D to the tth power.

36


