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7.1 DYNAMICAL SYSTEMS AND EIGENVEC-
TORS: AN INTRODUCTORY EXAMPLE

Consider a dynamical system:
x(t+ 1) = 0.86x(t) + 0.08y(t)

y(t+ 1) = —-0.12x(¢) + 1.14y(¢t)

Lo | x(t)
=3

be the state vector of the system at time ¢.

Let

We can write the matrix equation as
v(t+ 1) = Av(t)

where
A= 0.86 0.08
| —0.012 1.14

Suppose we know the initial state, we wish to find 7(t),
for any time t.

Case 1: Suppose 7(0) = :1),88
Case 2: Suppose 9(0) = igg
Case 3: Suppose 7(0) = 1888




Case 1:

3(1) = A5(0) = [ 0.86 0.08] ! 1oo] _ [ 110]

—0.012 1.14 300 330

#(1) = A7(0) = 1.17(0)
7(2) = AT(1) = A(1.17(0)) = 1.12%(0)
7(3) = Av(2) = A(1.1%3(0)) = 1.13%(0)

7(t) = 1.1'9(0)
Case 2:

—0.012 1.14 100 | | 90

v(1) = AY(0) = 0.97(0)
7(t) = 0.9'7(0)

3(1) = A5(0) = [ 0.86 0.08] [200] _ [ 180]

Case 3:

3(1) = A5(0) = [ 0.86 0.08] [1000] _ [ 940 ]

—0.012 1.14 1000 1020

The state vector ¥(1) is not a scalar multiple
of the initial state ¢¥(0). We have to look for
another approach.



Consider the two vectors

= _[1o0] .. _[200
1 =1 300 271100

Since the system is linear and

S 1000 . S
v(0) = [ 1000 ] = 291 + 47>

Therefore,
7(t) = A'G(0) = AN (201 +40,) = 2AM + 4 A5
= 2(1.1)% + 4(0.9)05

= 2(1.1)¢ [ ;88 ] + 4(0.9)! [ fgg ]

z(t) = 200(1.1)" 4+ 800(0.9)*

y(t) = 600(1.1)t + 400(0.9)*

Since the terms involving 0.9% approach zero
as t increases, x(t) and y(t) eventually grow by
about 10% each time, and their ratio y(t)/x (%)
approaches 600/200=3.



See Figure 3, The state vector Z(¢) approaches
the line L1, with the slope 3.

Connect the tips of the state vector v(i),i =
1,2,...,t, the trajectory is shown in Figure 4.

Sometimes, we are interested in the state of
the system in the past at times -1, -2, ....

For different ¥(0), the trajectory is different.
Figure 5 shows the trajectory that starts above
L1 and one that starts below L».

From a mathematical point of view, it is in-
formative to sketch a phase portrait of this
system in the whole ¢—r-plane (see Figure 6),
even though the trajectories outside the first
quadrant are meaningless in terms of popula-
tion study.



Eigenvectors and Eigenvalues
How do we find the initial state vector ¥ such
that Av is a scalar multiple of ¥, or

AU = Av,

for some scalar \7?

Definition 7.1.1

Eigenvectors and eigenvalues Consider an
n X n matrix A. A nonzero vector v in R"
is called an eitgenvector of A if Av is a scalar
multiple of v, that is, if

Av = \v

for some scalar A. Note that this scalar A may
be zero. The scalar M\ is called the eigenvalue
associated with the eigenvector v.



EXAMPLE 1
Find all eigenvectors and eigenvalues of the
identity matrix I,.

Solution All nonzero vectors in R™ are eigen-
vectors, with eigenvalue 1.

EXAMPLE 2

Let T" be the orthogonal projection onto a line
L in R2. Describe the eigenvectors of T geo-
metrically and find all eigenvalues of T

Solution (See Figure 8.) (a). Any vector ¥ on
L is a eigenvector with eigenvalue 1. (b). Any
vector w perpendicular to L is a eigenvector
with eigenvalue O.



EXAMPLE 3

Let T from R? to R? be the rotation in the
plane through an angle of 90° in the counter-
clockwise direction. Find all eigenvalues and
eigenvectors of T'. (See Figure 9)

Solution There are no eigenvectors and eigen-
values here.

EXAMPLE 4
What are the possible real eigenvalues of an
orthogonal matrix A7

Solution The possible real eigenvalue is 1 or
-1 since orthogonal transformation preserves
length.



Dynamical Systems and Eigenvectors

Fact 7.1.3 Discrete dynamical systems
Consider the dynamical system

Z(t + 1) = AZ(t) with £(0) = &g
Then

Z(t) = AlZg

Suppose we can find a basis v1,vo,...,v, Of R"
consisting of eigenvectors of A with

AU1 = A\ U1, AUp = AoUo, ..., AUp = A\pUn.
Find the coordinates cq,c¢o,...,cn Of vector xj
with respect to vq,vo,...,vn OF R™:

Z(0) = c1U71 + coV2 + - - - + cnUn.

C1




Let S =

Then xg =S

Consider

Un
_ o
C
so that | 2

Z(t) = i \i01 + codbin + - - - + ep AL .

We can write this equation in matrix form as

— —

vl U2

Z(t) =

A, 0 .0
0 X, 0 0
0 0 0 X
O—t
O 1 g1z,
M

C1
C2

Cn




Definition 7.1.4
Discrete trajectories and phase portraits
Consider a discrete dynamical system

Z(t 4+ 1) = AZ(t)

with initial value Z(0) = Zp where A is a 2 x 2
matrix. In this case, the state vector Z(t) =
! 1 (1)

z2(t)
the x1 — zo-plane.

] can be represented geometrically in

The endpoints of state vectors #(0) = %, (1) =
AZo, Z(2) = A2, ...form the (discrete) tra-
jectory of this system, representing its evo-
lution in the future. Sometimes we are in-

terested in the past states #(—1) = A_lfo,
2(=2) = (A2)~1zy, ... as well. It is suggestive

to "connect the dots’ to create the illusion of
a continuous trajectories. Take another look
at Figure 4.



A (discrete) phase portrait of the system Z(t +
1) = AZ(t) shows discrete trajectories for vari-
ous initial states, capturing all the qualitatively
different scenarios (as in Figure 6).

See Figure 11, we sketch phase portraits for
the case when A has two eigenvalues A1 > Ao >
0. (Leave out the special case when one of
the eigenvalues is 1.) Let Lq = span(¥y) and
L> = span(v>). Since

Z(t) = c1 A\101 + 2250

we can sketching the trajectories for the fol-
lowing cases:
(@) A1 > X >1

(b) A1 >1> X

() 1>X1> X



Summary 7.1.4
Consider an n x n matrix

— — —

1 ’l}2 o o ’l}n

Then the following statements are equivalent:

i. A is invertible.

ii. The linear system Ax = b has a unique
solution &, for all b for all b in R"™.
iii. rref(A) = Ip,.

iv. rank(A) = n.

v. im(A) = R™.

vi. ker(A) = {0}.

vii. The v; are a basis of R".

viii. The v; span R™.

iX. The v; are linearly independent.
X. det(A) # 0.

Xi. O fails to be an eigenvalue of A.



7.2 FINDING THE EIGENVALUES OF A
MATRIX

Consider an n x n matrix A and a scalar A\. By
definition X\ is an eigenvalue of A if there is a
nonzero vector v in R™ such that

AT = \T
Ao — AT =0

(M, — A)T=0

An an eigenvector, U needs to be a nonzero
vector. By definition of the kernel, that

ker(M, — A) # {0}.

(That is, there are other vectors in the kernel
besides the zero vector.)

T herefore, the matrix A\I,,— A is not invertible,
and det(\I,, — A)=0.

10



Fact 7.2.1 Consider an n x n matrix A and a
scalar A. Then X is an eigenvalue of A if (and
only if) det(Al, — A) =0

A IS an eigenvalue of A.

)

There is a nonzero vector ¥ such that Av = \v

)
ker(M, — A) # {0}.

)
M, — A is not invertible.

)

det(\I, — A) =0

11



EXAMPLE 1 Find the eigenvalues of the ma-
trix

Az[ié].

Solution
By Fact 7.2.1, we have to solve the equation

det()\fz — A):OZ

A 0O 1 2
sz -y =ae([3 9] - [12])

A—1 -2
—4 A-3

=det[

=(A-1)(A—-3)-8
=X —4)X—5

=(A-5((M\+1)=0

The matrix A have two eigenvalues 5 and -1.

12



EXAMPLE 2 Find the eigenvalues of

QO ONN
OO WwWww
o+ prp

)

© O oo
o1 01 01 On

Solution
Again, we have to solve the equation det(Alg —
A)=0:

A-1 -2 -3 -4 5
0 AX—2 -3 -4 -5

det(\Ms—A)=| 0 0 A—3 -4 -5
0 0 0 M—4 -5
0 0 0 0 MA-—5

—O=1)A=2)A=3)(A—4)(A—5) =0

There are five eigenvalues 1, 2, 3, 4, and 5 for
matrix A.

Fact 7.2.2 The eigenvalues of a triangular
Mmatrix are its diagonal entries.
13



The eigenvalues of an n x n matrix A as zeros
of the function

FAON) = det( My, — A).

EXAMPLE 3 Find f4()\) for the 2 x 2 matrix

a b
A= . dl
Solution
A—a —b
fA()\)—det()\IQ—A)—det! . )\—d]

=% — (a+ )X+ (ad — be)
The constant term is det(A). Why? Because

the constant termis f4(0)=det(0l,—A)=det(—A)

—=det(A).
Meanwhile, the coefficient of X\ is the negative
of the sum of the diagonal entries of A. Since
the sum is important in many other contexts,
we introduce a name for it.

14



Definition 7.2.3 Trace

The sum of the diagonal entries of an n X n
matrix A is called the trace of A, denoted by
tr(A).

Fact 7.2.4 If Ais a 2 x 2, then
fa(\) = det(Mo — A) = A2 — tr(A)X + det(A)

. 1 2
For the matrix A = [4 3

and det(A)=-5, so that

], we have tr(A)=4

fa(\) =22 — 4\ — 5.

What is the format of f4(\) for an n xn matrix
A7

fa(N) = A" —tr(A)A"14(a polynomial of
degree < (n — 2)).

The constant term of this polynomialis f4(0) =
det(—A) = (—1)"det(A).
15



Fact 7.2.5 Characteristic polynomial
Consider an n x n matrix A. Then fa(\) =
det(M\I, — A) is a polynomial of degree n of the
form

fa(N) = A" —tr(A)A"E 4 4 (—1)"det(A)

fa(X\) is called the characteristic polynomial oOf
A

From elementary algebra, a polynomial of de-
gree n has at most n zeros. If n is odd,

M i) =ccand "™ 400 = —co.

A— 00 A——00

See Figure 1.

16



EXAMPLE 4 Find the eigenvalues of

(1 2 3 4 5]
0 23 465
A=|1001 2 3
0002 3
0 00O01

Solution

Since f4(A\) = (A—1)3(\—2)2, the eigenvalues
are 1 and 2. Since 1 is a root of multiplic-
ity 3 of the characteristic polynomial, we say
that the eigenvalue 1 has algebraic multiplic-
ity 3. Likewise, the eigenvalue 2 has algebraic
multiplicity 2.

Definition 7.2.6

Algebraic multiplicity of an eigenvalue We
say that an eigenvalue \g of a square matrix A
has algebraic multiplicity k if

Fa) = (A = 20)fg(N)

for some polynomial g(A) with g(Ag) # 0 (i.e.,if
Ap is a root of multiplicity k& of f4()\)).

17



EXAMPLE 5 Find the eigenvalues of

2 -1 —1
A= -1 2 -1
| -1 -1 2

with their algebraic multiplicities.

Solution

fa(\) = det 1 A—2 1

=(A=2)34+2-31=-2)=(—23)°\

We found two distinct eigenvalues, 3 and O,
with algebraic multiplicities 2 and 1, respec-
tively.

Fact 7.2.7 An n x n matrix has at most n
eigenvalues, even if they are counted with their
algebraic multiplicities.

If n is odd, then an n X n matrix has at least
one eigenvalue.

18



EXAMPLE 6 Describe all possible cases for
the number of real eigenvalues of a 3 x 3 ma-
trix and their algebraic multiplicities. Give an
example in each case and graph the character-
istic polynomial.

Solution
Case 1: See Figure 3.
(1 0 O
A=10 2 0|, faA0)=MA—-1)(A—2)(A—3).
|0 0 3|
Case 2: See Figure 4.
(1 0 O
A=101 0|,fs0)=0O=1)20-2).
' 0 0 2

Case 3: See Figure 5.
A=1I3,fa(0) = (A —1)°.
Case 4. See Figure 6.

(1 0 O
0 —1|,f4a00)=0O-1)(*+1).
1

A=

O
| O

19



It is usually impossible to find the exact eigen-
value of a matrix. To find approximations for
the eigenvalues, you could graph the charac-
teristic polynomial. The graph may give you
an idea of the number of eigenvalues and their
approximate values. Numerical analysts tell us
that this is not a very efficient way to go; other
techniques are used in practice. (See Exercise
7.5.33 for an example; another approach uses
QR factorization.)

Exercises 7.2: 3,5, 9, 11, 18, 20, 25

20



7.3 FINDING THE EIGENVECTORS OF
A MATRIX

After we have found an eigenvalue A of an nxn
matrix A, we have to find the vectors v in R"
such that

AT = X0 or (M, — A)T=0

In other words, we have to find the kernel of
the matrix \I,, — A.

Definition 7.3.1 Eigenspace
Consider an eigenvalue A of an n X n matrix
A.Then the kernel of the matrix A\I,,—A is called
the eigenspace associated with A\, denoted by
E)\Z

Ey\ = ker(\I, — A)
Note that E\ consists of all solutions v of the
linear system

AU = MU

21



EXAMPLE 1 Let T(¥) = AvY be the orthogo-
nal projection onto a plane E in R3. Describe
the eigenspaces geometrically.

Solution See Figure 1.
The nonzero vectors v in E are eigenvectors
with eigenvalue 1. Therefore, the eigenspace
E4 is just the plane E.

Likewise, Eg is simply the kernel of A (A% = 0);
that is, the line E+ perpendicular to E.

22



EXAMPLE 2 Find the eigenvectors of the

. 1 2
matrix A = [4 3].

Solution
See Section 7.2, Example 1, we saw the eigen-
values are 5 and -1. Then

Fs = ker(51> — A) = ker [ 4 =2 ]
= ker 4 =2
= 0 o | = span

span

]

2

= span | _, ] = span

E_1 = ker(— IQ—A)—ker[

Both eigenspaces are lines, See Figure 2.

23



EXAMPLE 3 Find the eigenvectors of

(1 1 1]
A =

O 0 1].
| 0 0 1|
Solution

Since

fAQ) = A(A - 1)?

the eigenvalues are 1 and O with algebraic mul-
tiplicities 2 and 1.

To find this kernel, apply Gauss-Jordan Elimi-

nation:

0

O
O

—1
1
O

(0 —1 —1 |
E{=ker| O 1 —1
O 0 0

—1 ] 011
—1 [rref | O O 1
0 "0 0O

The general solution of the system

O
O

L2
L3

24



1 1
O|=x1|0
L O - L O -
Therefore,
TR
E1 =span | O
L O -

Likewise, compute the Ep:

1
FEqg = span | —1
0

Both eigenspaces are lines in the x1-x>-plane,
as shown in Figure 3.

Compare with Example 1. There, too, we
have two eigenvalues 1 and O, but one of the
eigenspace, Eq, is a plane.



Definition 7.3.2 Geometric multiplicity
Consider an eigenvalue X if a matrix A. Then
the dimension of eigenvalue E) = ker(Al, — A)
is called the geometric multiplicity of eigenvalue
M. Thus, the geometric multiplicity of A is the
nullity of matrix \I,, — A.

Example 3 shows that the geometric multiplic-
ity of an eigenvalue may be different from the
algebraic multiplicity. We have

(algebraic multiplicity of eigenvalue 1)=2,
but
(geometric multiplicity of eigenvalue 1)=1.

Fact 7.3.3
Consider an eigenvalue XA of a matrix A. Then

(geometric multiplicity of )<
(algebraic multiplicity of \).

25



EXAMPLE 4 Consider an upper triangular
matrix of the form

A=

oNoNoNeN
OO ON e
OPD e o o
N o o o o

QO P~ o o

What can you say about th eometric multi-

plicity of the eigenvalue 47

®
(@]

Solution
(3 o o o o (1] o o o o |
O 2 o o o O 1 o o o
Ea=|0 0 0 e o |7rref| O O O f o
000O0e| |OOOO ¢
O OO0 OO O OO0 OO

The bullets on row 3 and 4 could be leading
1's. Therefore, the rank of this matrix will be
between 2 and 4, and its nullity will be between
3 and 1. We can conclude that the geometric
multiplicity of the eigenvalue 4 is less than the
algebraic multiplicity.

26



Recall Fact 7.1.3, such a basis deserves a hame.

Definition 7.3.4 Eigenbasis

Consider an nx n matrix A. A basis of R"
consisting of eigenvectors of A is called an
etgenbasts for A.

Example 1 Revisited: Projection on a plane
E in R3. Pick a basis @1, 7> of E and a nonzero
U3 in E-+. The vectors U1, Up,v3 form an eigen-
basis. See Figure 4.

Example 2 Revisited: A = [élt g]

The vectors > and [ 1 form an eigenba-
sis for A, see Figure 5.

(1 1 1]
Example 3 Revisited: A= |0 0 1

0 0 1
There are not enough eigenvectors to form an

eigenbasis. See Figure 6.
27



EXAMPLE 5 Consider a 3 x 3 matrix A with
three eigenvalues, 1, 2, and 3. Let v7,v>, and
U3 be corresponding eigenvectors. Are vectors
U1, U2, and vz necessarily linearly independent?

Solution See Figure 7.

Consider the plane E spanned by v, and v5.
We have to examine v3 can not be contained
in this plane.

Consider a vector ¥ = cqv] 4+ cov5 in E (with
c1 = 0 and c» # O). Then Axr = C]_A’l71 -+
co AUy = c1v] + 2cov>. This vector can not
be a scalar multiple of Z; that is, £ does not
contain any eigenvectors besides the multiples
of ¥ and vy, in particular, v3 is not contained
in E.

28



Fact 7.3.5 Considers the eigenvectors v, vo,

.., Um Of an nxn matrix A, with distinct eigen-
values A1, Ao, ..., Am. Then the v; are linearly
independent.

Proof
We argue by induction on m. Assume the claim
holds for m — 1. Consider a relation

c1U1 + -+ cm—1Um—1 + cmom = 0
e apply the transformation A to both sides:

QML+ F 1 Am_1Um—1 + cmAmTm = 0
e Mmultiply both sides by A\;;:

AAAmTL + -+ ¢y 1 AmUm—_1 + cmAmtm = 0
Subtract the above two equations:

c1( A1 =Mm)T14+Femo1(Mm_1—Am)Tp_1 =0
Since vy, v, ..., U;m_1 are linearly independent
by induction, ¢;(\;—Am) =0, fori=1,....m—1.
The eigenvalues are assumed to be distinct;
therefore \; — Am # 0, and ¢; = 0. The first
equation tells us that ¢, g, = 0, so that ¢, = O
as well.
29



Fact 7.3.6 If an n x n matrix A has n distinct
eigenvalues, then there is an eigenbasis for A.
We can construct an eigenbasis by choosing
an eigenvector for each eigenvalue.

EXAMPLE 6 Is there an eigenbasis for the
following matrix?

OO OWWwWWw
ocop+pPpppH
o 010101 01 On
O OO OOy O

eNoNGRGRNON__
OO OONDN

Fact 7.3.7 Consider an n x n matrix A. If the
geometric multiplicities of the eigenvalues of A
add up to n, then there is an eigenbasis for A:
We can construct an eigenbasis by choosing a
basis of each eigenspace and combining these
vectors.

30



Proof

Suppose the eigenvalues are A1, Ao, ..., Am,
with dim(E).)=d;. We first choose a basis 71,
Up, ..., Uq, of £y, , and then a basis v4, 41, ...,

Ud,+d, OF E),, and so on.

Consider a relation

cv1 4 -+ ¢q, U, + -+ Ca+d,Udi+d, T F - enly =0

w1 N EAl wo iNn E)\Q W, 1N E>\m

Each under-braced sum w; must be a zero vec-
tor since if they are nonzero eigenvectors, they
must be linearly independent and the relation
can not hold.

Because w1 = 0, it follows that ¢y = cr = --- =
Cd; = 0, since vy, vo, ..., ’Udl are linearly inde-
pendent. Likewise, all the other cj are zero.



EXAMPLE 7 Consider an Albanian mountain
farmer who raises goats. This particular breed
of goats has a life span of three years. At
the end of each year t, the farmer conducts a
census of his goats. He counts the number of
young goats j(t) (those born in the year t), the
middle-aged ones m(t) (born the year before),
and the old ones a(t) (born in the year ¢t — 2).
The state of the herd can be represented by
the vector

WION
Z(t) = | m(t)
| a(?) |
How do we expect the population to change
from year to year? Suppose that for this breed
and environment the evolution of the system
can be modelled by

Z(t+ 1) = AZ(t)

0O 0.95 0.6 ]
where A = | 0.8 0 O
O 05 O

31



We leave it as an exercise to interpret the en-
tries of A in terms of reproduction rates and
survival rates.

Suppose the initial populations are jo = 750
and mg = ag = 200.What will the popula-
tions be after t years, according to this model?
What will happen in the long term??

Solution
Step 1: Find eigenvalues.

Step 2: Find eigenvectors.

- 750 |
Step 3: Express the initial vector vg = | 200

| 200 |
as a linear combination of eigenvectors.

Step 4: Write the closed formula for 9(t).



Fact 7.3.8

The eigenvalues of similar matrices Sup-
pose matrix A is similar to B. Then

1. Matrices A and B have the same charac-
teristic polynomial; that is, f4(A) = fg(\)

2. rank(A) =rank(B) and nullity(A) =nullity(B)

3. Matrices A and B have the same eigenval-
ues, with the same algebraic and geomet-
ric multiplicities. (However,the eigenvec-
tors need not be the same.)

4. det(A)=det(B) and tr(A)=tr(B)

32



Proof
a. If B=S"1A8, then

fe(\) = det(\p, — B) = det(\, — S~LAS)

= det(S~1(\I[—A)S)= det(S1det(\I;,—A)det(S)
= det(An — A) = fa(N)

b. See Section 3.4, exercise 45 and 46.

c. If follows from part (a) that matrices A
and B have the same eigenvalues, with the
same algebraic multiplicities. As for for the
geometric multiplicities, note that \I,, — A is
similar to A\I,, — B for all X\, so that nullity(Al, —
A)=nullity(AI, — B) by part (b).

d. These equations follow from part (a) and
Fact 7.2.5. Trance and determinant are coef-
ficients of the characteristic polynomial.



7.4 Diagonalization

Fact 7.4.1 The matrix of a linear trans-
formation with respect to an eigenbasis is
diagonal

Consider a transformation Tx = Az, where A
IS an n X n matrix. Suppose B is an eigenba-
sis for T' consisting of vectors v1, v, ..., Up, With
Av; = \v;. Then the B-matrix D of T is

A O . 0]
D=glag=|9 A2 - O
0 0 0 M|
Here _ _
S = 17!1 ’(_)!2 17!71
B |
i i A T = S[‘ﬂs
ST T8
i)y o [ar]y [Tls= 8T

33



Def 7.4.2 Diagonalizable matrices

An n X n matrix A is called diagonalizable if
A is similar to a diagonal matrix D, that is, if
there is an invertible n x n matrix S such that
D = S—1AS is diagonal.

Fact 7.4.3

Matrix A is diagonalizable iff there is an eigen-
basis for A. In particular, if an n x n matrix A
has n distinct eigenvalues, then A is diagonal-
izable.

34



Alg 7.4.4 Diagonalization

Suppose we are asked to decide whether a
given n x n matrix A is diagonalizable, if so,
to find an invertible matrix S such that S—1AS
is diagonal. We proceed as follows:

1. Find the eigenvalues of A, i.e., solve f(\) =
det(\I, — A) = 0.

2. For each eigenvalue )\, find a basis of the
eigenspace Ey\ = ker(A\l, — A).

3. A is diagonalizable iff the dimensions of
the eigenspaces add up to n. In this case,
we find an eigenbasis v1, Vo, ...,uy fOor A by
combining the bases of the eigenspaces.
Let S = | v7 Uo ... Up } then the matrix

S—1AS is a diagonal matrix.

35



Example Diagonalize the matrix

Solution

a. The eigenvalues are O and 1.

1 ]

b. Eg = ker(A) =span(| 1 |,
L O -
1
and F{ = ker(I3 — A) = span | O
0

c. If we let )
-1 —1 1

S = 1 O O

0 1 0

then

(0 O

D=S1As=|0 0

00

= O O




Alg 7.4.5 Powers of a diagonalizable ma-
trix

To compute the powers At of a diagonalizable
matrix A (where t is a positive integer), pro-
ceed as follows:

1. Use Alg 7.4.4 to diagonalize A, i.e. find S
such that S—1AS = D.

2. Since A= SDS™ 1, Al = spts—1,
3. To compute D!, raise the diagonal entries

of D to the tth power.
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