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6.1 INTRODUCTION TO DETERMINANTS

The matrix A = !‘C‘ Z] is invertible iff

ad — bc #= 0O,

The quantity ad — bc is called the determinant
of the matrix A.

Can we assign a number det(A) to any square
matrix A, such that A is invertible iff det(A) %
07

The determinants of a 3 x 3 matrix
Let

a1l aip ai3 |
A= | az1 ap> ap3
| a31 a32 asz3 |
The matrix is not invertible if the three col-
umn vectors are contained in a same plane.
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In this case, one of the vector u is perpendic-
ular to the cross product v x w; that is,

7 (¥ x @) =0

aiil ailo a3
a»y | - a»> [ X | an»3
| 431 | | 32 | | @33 |
aii a22a33 — 32423
= | a21 | + | a32a13 — a12a33
| a31 | | @12a23 — 22413 |

= ay1(a20a33 — azpan3)
+ ax1(azza13 — a10a33)
+ a31(ai2a23 — axsa13)



The terms (a22a33 —a32a23), (az2a13—a12a33),
and (aj1pa23 — ansoaq3) are the determinants of

submatrices of A.

321 az2 a3

a3l a3 a33

Definition 6.2.9 Minors

For an n x n matrix A, let A;; be the matrix
obtained by omitting the ith row and the jth
column of A. The (n—1) x (n— 1) matrix A;;
is called a minor of A.

a1l aip --- ahj ‘- aip
ar1 azp --- apj ‘- aoy
A — . . . .
;1T &2 Qg in
| Onl ap2 - Gpj - Ann |

We can now represent the determinant of a
3 X 3 matrix more succinctly:

det(A) = ayidet(Aq11)—anidet(Az1)+az1det(Azq)
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This representation of the determinant is called
the Laplace expansion of det(A) down the
first column. Like wise, we can expand along
the first row:

det(A) = ayi1det(A11)—aizdet(A12)+aizdet(A13)

In fact, we can expand along any row or down
any column.

The rule for the signs is as follows: The sum-
mand a;;det(A;;) has a negative sign if the sum
of the two indices, ¢+ + 7, is odd.



Fact 6.2.10 Laplace expansion

We can compute the determinant of an n X n
matrix A by Laplace expansion along any row
or down any column.

Expansion along the :th row:

det(A) = En: (—1)i+jaz’jdet(14ij)
j=1

Expansion down the jth column:

n . .
det(A) — Z (—1)Z+]aijd€t(z4ij)
1=1



Example Use Laplace expansion to compute
det(A) for

o0 O+
ON PO
oON WH
WOON

Solution Looking for rows or columns with as
many zeros as possible, we can choose the sec-
ond column:

det(A) = 1ldetAoo — 2detA3zo

(1 1 27 (1 1 27
. 9 3 0
= 1det 9 5 0 -2
| 5 0 3 | | 5 0O 3 |
1 1 2 1 1 2
=det| 9 2 0| —2det| 9 3 O
5 0 3 5 0 3
. 9 2 1 1 9 3 1 1
—2det[5 O]—I—Sdet[g 2]—2<2det[5 O]—|—3det[9 3]>
= -20-21-2(—-30-18) =55



6.2 PROPERTIES OF THE DETERMI-
NANT

Fact 6.2.1 Determinant of the transpose
If A is a square matrix, then

det(A1) = det(A).

Linearity Properties of the Determinant
The function T(A) = det(A) from R™"*™ to R
is nonlinear (if n > 1). Still, the determinant
has some noteworthy linearity properties.

EXAMPLE 1 Consider the transformation

1 (1 2 z1 3

To | 4 5 o 6

Flas [T 7 6 a3 5
| T4 _4 3 T4 1_

from R* to R. Is this transformation linear?



Solution Since

(1 2 27 3

4 5

L2 —
det 76 25 5| c1x1 + coxo + c3x3 + cqx4

4 3 x4 1

for some constants ¢;, the transformation T is
linear.




Fact 6.2.3 Linearity of the determinant

(a) If three n x n matrix A, B,C are the same,
except for the jth column and the jth col-
umn of C' is the jth columns of A and B, then

det(C) = det(A) + det(B):

| | |
U] - f_|_g 3
det | | | ]
A
| | | | | |
U1 T - Up, +det | v1 - Y -+ Up
=det || | ] L | ]
B C

(b) If two n x n matrix A, B are the same, ex-
cept for the jth column and the jth column
of B is k times the jth columns of A, then

det(B) = kdet(A):

det

7 A\

\

| | | |
U1 - kT - T | =kdet | By
|
B

g — 8y —

~



Determinants and Gauss-Jordan Elimina-
tion

There are three elementary row operations:
(a) dividing a row by a scalar,

(b) swapping two rows, and

(c) adding a multiple of a row to another row.

(a) If
g g o
A= | — z‘fz — | and B=| — 172/19 —

then det(B)=(1/k)det(A), by linearity in the
1th row.

(b) If the matrix B is obtained from A by swap-
ping any two rows, then det(B)=-det(A).
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(c) A= ’ . B=

— b - — T+ kv —

By linearity in the jth row, we find that

det(B) = det : + kdet

= det(A) + 0 =_ det(A)

Proof

If a matrix A has two equal rows, what can you
say about det(A)? Since we have swapped two
equal rows, we have B= A

det(A) = det(B) = —det(A),
so that det(A)=0.



Fact 6.2.4 Elementary row operations and
determinants
a. If B is obtained from A by dividing a row of

A by a scalar k, then
det(B) = (1/k)det(A).
b. If B is obtained from A by a row swap, then
det(B) = —det(A).

c. If B is obtained from A by adding a multiple
of a row of A to another row, then

det(B) = det(A).

Analogous results hold for elementary column
operations.



Suppose that in the course of Gauss-Jordan
elimination, we swap rows s times and divide
various rows by the scalars k1, ko, ..., kr. Then

1
det A) = (-1)° det(A),
et(rrefA) = (=1)"————det(A)
or

det(A) = (—1)°k1ko...krdet(rrefA).

(a) When A is invertible, then rref(A) = I,
so that det(rref A)=1, and

det(A) = (—=1)°k1ko...kr. # 0

(b) When A is not invertible, then det(A)=0.

Algorithm 6.2.6

Consider an invertible matrix A. Suppose you
swap rows s times and you divide various rows
by the scalars k1, ko, ..., kr @S you row-reduce A.
Then,

det(A) = (—1)°k1ko...ky
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T he Determinant of a Product

Fact 6.1.3

The determinants of an (upper or lower) tri-
angular matrix is the product of the diagonal
entries of the matrix.

Fact 6.2.1 Determinant of a transpose
If A is a square matrix, then

det(AT) = det(A)

Fact 6.2.7 Determinant of a product
If A and B are n x n matrices, then

det(AB) = det(A)det(B)

The Determinant of an Inverse

Fact 6.2.8 Determinant of an inverse
If A is an invertible matrix, then

1N 1 1
det(A™ ") = (detA)” ~ = i (A)
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Preliminary for Proof of Fact 6.2.4

An elementary matrix is one that is obtained
by performing a single elementary row opera-
tion on an identity matrix.

1 00 010 1 00
Ei=| 0 1 0|,Bo=|100]|,E5=|010
4 0 1 0 0 1 00 5

a b c
A= |d e f
g h 1

Compute E1A, E>A, and E3A,

a b c
Fi1A = d e f ,
g—4a h—4b 11— 4c
d e f a b c
F>A=|a b c | ,E3A= d e f
g h 1 5g 5h 51

we found that addition of -4 times row 1 of A to row 3
produces F1A. (This is a row replacement operation.)
An interchange of rows 1 and 2 of A produces E>A, and
multiplication of row 3 of A by 5 produces FE3A.
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Proof of Fact 6.2.4

If Ais an n xn matrix and E is an n x n ele-
mentary matrix, then

detEA = (detE)(detA)
where

k if FE1sa scale by k
detEE = ¢ —1 if E 1s an interchange
1 f Eisarow replacement

The proof is by induction on the size of A. The case of
a 2x2 matrix can be verified. Suppose that the theorem
hold for determinants of n x n matrices with k> 2, let A
be (n+1)x(n+1). The action of £ on A involves either
two rows or only one row. So we expand det(EA) across
a row that is unchanged by the action of E, say, row
i. Let A;; (respectively, B;;) be the matrix obtained by
deleting row ¢ and column j from A (respectively, B).
Since these submatrices are only n x n, the induction
assumption implies that

detB;; = o - detA;j
where a = k,1, or —1, depending on the nature of E.
detEA = a;1(—=1)"TYdetBi1 + - - - 4 ain(—=1)"T"det By,
= a;1(=1)"Tta - detAin + -+ + ain(=1)"T"« - det A;n,
= o -detA
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6.3 Geometrical Interpretations of the De-
terminant

Fact 6.3.1
Determinant of an othogonal matrix is either
1 or -1.

Proof
We know that
AlA =1,

det(AT A) = det(AD)det(A) = det(A)? = 1
Fact 6.3.3
Consider a 2 x 2 matrix A = [viv5]. Then, the

area of the parallelogram defined by v7 and v5
is |det(A)].
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Proof
Consider the Gram-Schmidt process for two
linearly independent vectors v and v5 in R2.
Let

= [viv2]
B = [wiv3] — det(B) = det—(A)

= [wywW] — det(C) = det(1

— _wlwz] — det(Q) — —dTﬁ%ﬁ)

We conclude that

det(A) = [[vil|[|v2 — projy; v2l|det(Q)
or

|det(A)| = [[vill[|[v2 — projv, v3

If the direction of v5 is obtained by rotating
v1 through a counterclockwise angle between
O and m, then det(A)=det[ v1 ©v5 ] will be pos-
itive. If we rotate through a clockwise angle
between 0 and —m, then det(A) will be nega-
tive.
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Fact 6.3.5

Consider a 3 x 3 matrix A = [vivsv3]. Then,
the volume of the parallelepiped defined by v1,
v5> and v3 is |det(A)|.

Fact 6.3.4
If Ais an n x n matrix with columns v, ..., vn,
then

|det(A)| = |[villl|[vz — projv, 03l|...[lprojy,, _, vall

Definition 6.3.6

Consider the vectors vi,...,v; in R™. The k-
volume of the k-parallelepiped defined by the
vectors vy, ...,v; is the set of all vectors in R"
of the form cqivy + covp + ... + cpvi., where 0 <
c; < 1. The k-volume V(vi,...,v;) of this k-
parallelepiped is defined recursively by V(v7) =
lvi]| and

V(vi,...,0;) = V(1, ..., Op—1) |0k — projy,_, vkl
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Fact 6.3.7

Consider the vectors vy, ...,v; in R™. Then the
k-volume of the k-parallelepiped defined by the
vectors vy, ..., v}, IS

Vdet(AT A)

where A is the nxk matrix with columns vy, ..., v.

Proof
ATA = (QR)'(QR) = RTQ'QR = R'R,
because Q1Q = I,,.

det(ATA) = det(R'R) = det(R!)det(R)
= (r11722.-7kk)? f
= ([[vill[[vz = projyyv2|...[[vk — projv;,_; vill):
= (V(v1,...,03))?
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Fact 6.3.8 Expansion Factor
Consider a linear transformation T(¥) = AZx
from R?2 to R?. Then, |det(A)] is the expansion
factor

area of T(2)

area of €2

of T" on parallelgrams €2.
Likewise, for a linear transformation T'(¥) = A%
from R™ to R"™. Then, |det(A)]| is the expansion
factor of T' on n-parallelpipeds:

V(Avi,..., Avp) = |det(A) |V (v1, ..., Un),

for all vectors v1,...,v, in R™.

Using techniques of calculus, we can verify that
|det(A)| also gives the expansion factor of linear
transformation 7' on any region €2 in the plane.
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Fact 6.3.9 Cramer’s Rule
Consider the linear system

AZ = b,

where A is an invertible n x n matrix. The
components x; of the solution vector x are

 det(A4;(b))
YT T det(A)

where A4,(b) is the matrix obtained by replacing
the ith column of A by b.

Proof
Write A=[a] a5 ... a; ... ap ]. If Zis the
solution of the system Ax = 5, then
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det(A;(b)) = det| ai a» b an |
=det[ a1 da> ... AZ ... apn |
=det[ a1 a> ... (ziai+ ..+ xia+ ...+ zndan) ... dn ]
=det[a] d> ... x;a; ... dn |
= x;det[ a1 a> ... a; ... dp |

Note that we have used the linearity of the
determinant in the :th column. Therefore,

 det(A4;(b))
T T et (A)
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Consider an invertible n x n matrix A and write

[ m11 Mo

A-1 — | M21 M22

Mnp1 Mp2

mlj
mQj

mnj

min

mon

mMnn

We know that AA—1 = I,,. Picking out the jth
column of A—1 we find that

A

m]_j
mQj

mn] |

Q.

By Cramer’s rule, m;; = det(A;(e;))/det(A),
where the ith column of A is replaced by e_]’-.

Ai(€5) =

aiil
az1

aj]_

aj2
az2

CLjQ

o O

a1n
ann,
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Since det(A;(€;) = (—a)*TIdet(A;;), so that

det(Aﬁ)

o— (1)t
mi; = (=LA

Fact 6.3.10 Corallary to Cramer’s rule
Consider an invertible nxn matrix A. The clas-
sical adjoint adj(A) is the n x n matrix whose

ijth entry is (—1)*TJdet(A;;). Then,

[ C11 Co1 -+ O

-1 _ 1 d](A) — 1 C’12 022 T CnQ
det(A) der(y | 2o

1n 2n " nn
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Example 5 Consider the linear system

ar + by =1

cr+dy =1
where d > b >0 and a > ¢ > 0. How does the
solution X change as we change the parameters

a and c¢? More precisely, find 0x/0da and 0x/0c,
and determine the signs of these quantities.

Solution
P
det 1 d I b
€Tr = — b — — ad bc
a _
det e d |
ox —d(d — b)
— = <0
0a  (ad — bc)?
0 b(d —b
r_ bd=b)

dc (ad — bc)?
See Figure 9.
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Example 6 For the vectors vectors wi, ws, and
b shown in Figure 10, consider the linear sys-
tem AZ = b, where A = [w} w5 ]. Cramer's

rule tells us that

_ det(A(b))
 det(A)

or
det(As(b)) = zodet(A)

Explain this geometrically, in terms of areas of
parallelograms.
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