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4.1 Introduction to Linear Systems

Definition 4.1.1

Linear spaces A linear space V is a set en-

dowed with

(1) a rule for addition (if f and g are in V, then

so is f + g) and

(2) a rule for scalar multiplication (if f is in V

and k in R, then kf is in V)

such that these operations satisfy the follow-

ing eight rules (for all f, g, h in V and all c, k in

R):

1. (f + g) + h = f + (g + h)

2. f + g = g + f

3. There is a neutral element n in V such that

f + n = f , for all f in V . This n is unique

and denoted by 0.
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4. For each f in V there is a g in V such that

f + g = 0. this g is unique and denoted by

(−f)

5. k(f + g) = kf + kg

6. (c + k)f = cf + kf

7. c(kf) = (ck)f

8. 1f = f



Linear Combination

We say that an element f of a linear space is a

linear combination of the elements f1, f2, . . . , fn

if

f = c1f1 + c2f2 + · · ·+ cnfn

for some scalars c1, c2, · · · , cn.

EXAMPLE 9

Let A =

[
0 1
2 3

]
. Show that A2 =

[
2 3
6 11

]
is

a linear combination of A and I2.

Solution

We have to find scalars c1 and c2 such that

A2 = c1A + c2I2,

or

A2 =

[
2 3
6 11

]
= c1

[
0 1
2 3

]
+ c2

[
1 0
0 1

]
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Definition 4.1.2 Subspaces

A subspace W of a linear space V is called a

subspace of V if

1. W contains the neutral element 0 of V

2. W is closed under addition (if f and g are

in W, then so is f + g).

3. W is closed under scalar multiplication (if

f is in W and k is a scalar, then kf is in

W).

We can summarize parts (2) and (3) by saying

that W is closed under linear combinations.
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Definition 4.1.3

Span, linear independence, basis, coordi-

nates

Consider the elements f1, f2, . . . , fn of a linear

space V.

1. We say that f1, f2, . . . , fn span V if every f

in V can be expressed as a linear combina-

tion of f1, f2, . . . , fn.

2. We say that f1, f2, . . . , fn are (linearly) independent

if the equation

c1f1 + c2f2 + · · ·+ cnfn = 0

has only the trivial solution

c1 = c2 = · · · = cn = 0.
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3. We say that elements f1, f2, . . . , fn are a

basis of V if they span V and are indepen-

dent. This means that every f in V can be

written uniquely as a linear combination

f = c1f1 + c2f2 + · · ·+ cnfn.

The coefficients c1, c2, . . . , cn are called the

coordinates of f with respect to the basis

f1, f2, . . . , fn.

Fact 4.1.4 Dimension

If a linear space V has a basis with n elements,

then all other bases of V consist of n elements

as well. We say that n is the dimension of V:

dim(V ) = n.



Definition 4.1.6 Finite-dimensional linear

spaces

A linear spaces V is called finite− dimensional

if it has a (finite) basis f1, f2, . . . , fn, so that

we can define its dimension dim(V ) = n. (See

Definition 4.1.4.) Otherwise, the space is called

infinite− dimensional.

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35
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EXAMPLE

In R3, the prototype linear space, the neutral

element is the zero vector,
→
0=




0
0
0


.

EXAMPLE

In R4, the prototype linear space, the neutral

element is the zero vector,
→
0=




0
0
0
0


.
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EXAMPLE 3

Let F (R,R) be the set of all functions from R

to R (see Example 1), with the operations

(f + g)(x) = f(x) + g(x)

and

(kf)(x) = kf(x)

Then, F(R,R) is a linear space. The neutral

element is the zero function, f(x) = 0 for all

x.

EXAMPLE 11

The differentiable functions form a subspace

W of F (R, R).
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EXAMPLE 12

Here are three more subspaces of F(R,R):

1. C∞, the smooth functions, that is, func-

tions we can differentiate as many times

as we want. This subspace contains all

polynomials, exponential functions, sin(x),

and cos(x), for example.

2. P , the set of all polynomials.

3. Pn, the set of all polynomials of degree ≤ n
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EXAMPLE 11

The polynomials of degree≤ 2, of the form

f(x) = a + bx + cx2, are a subspace W of the

space F(R,R) of all functions from R to R.

EXAMPLE 16

Find a basis of P2, the space of all polyno-

mials of degree ≤ 2, and thus determine the

dimension of P2.

EXAMPLE 19

Let f1, f2, . . . , fn be polynomials. Explain why

these polynomials do not span the space P of

all polynomials.

This implies that the space P of all polynomials

does not have a finite basis f1, f2, . . . , fn.
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EXAMPLE 4
If addition and scalar multiplication are given
as in Definition 1.3.9, then R2×2, the set of all
2 × 2 matrices, is a linear space. The neutral
element is the zero matrix whose entries are

all zero

[
0 0
0 0

]
.

EXAMPLE 13
Show that the matrices B that commute with

A =

[
0 1
2 3

]
form a subspace of R2×2.

EXAMPLE 14
Consider the set W of all noninvertible 2 × 2
matrices. Is W a subsequence of R2×2 ?

EXAMPLE 15
Find a basis of V = R2×2 and thus determine
dim(V ).

EXAMPLE 17
Find a basis of the space V of all matrices B

that commute with A =

[
0 1
2 3

]
.
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EXAMPLE 6

The linear equation in three unknowns,

ax + by + cz = d,

where a, b, c, and d are constants, from a linear

space.

The neutral element is the equation 0 = 0

(with a = b = c = d = 0).

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35
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4.2 LINEAR TRANSFORMATIONS AND

ISOMORPHISMS

Definition 4.2.1

Linear transformation Consider two linear spaces

V and W . A function T from V to W is called

a linear transformation if:

T (f + g) = T (f) + T (g) and T (kf) = kT (f)

for all elements f and g of V and for all scalar

k.

Image, Kernel For a linear transformation T

from V to W, we let

im(T ) = {T (f) : f ∈ V }
and

ker(T ) = {f ∈ V : T (f) = 0}
Note that im(T ) is a subspace of co-domain

W and ker(T ) is a subspace of domain V .
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Rank, Nullity

If the image of T is finite-dimensional, then

dim(imT ) is called the rank of T , and if the ker-

nel of T is finite-dimensional, then dim(kerT )

is the nullity of T .

If V is finite-dimensional, then the rank-nullity

theorem holds (see fact 3.3.9):

dim(V) = rank(T)+nullity(T)

= dim(imT)+dim(kerT)



EXAMPLE 4 Consider the transformation

T




a
b
c
d


 =

[
a b
c d

]

from R4 to R2×2.

We are told that T is a linear transformation.

Show that transformation T is invertible.

Solution

The most direct way to show that a function

is invertible is to find its inverse. We can see

that

T−1
[

a b
c d

]
=




a
b
c
d




The linear spaces R4 and R2×2 have essentially

the same structure. We say that the linear

spaces R4 and R2×2 are isomorphic.
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Definition 4.2.2 Isomorphisms and isomor-

phic spaces

An invertible linear transformation is called an

isomorphism. We say the linear space V and W

are isomorphic if there is an isomorphism from

V to W .
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EXAMPLE 5 Show that the transformation

T (A) = S−1AS from R2×2 to R2×2

is an isomorphism, where S =

[
1 2
3 4

]

Solution
We need to show that T is a linear transfor-
mation, and that T is invertible.

Let’s think about the linearity of T first:

T (M + N) = S−1(M + N)S = S−1(MS + NS)

= S−1MS + S−1NS

equals T (M) + T (N) = S−1MS + S−1NS and

T (kA) = S−1(kA)S = k(S−1AS)

equals kT (A) = k(S−1AS).

The inverse transformation is

T−1(B) = SBS−1
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Fact 4.2.3 Properties of isomorphisms

1. If T is an isomorphism, then so is T−1

2. A linear transformation T from V to W is

an isomorphism if (and only if)

ker(T ) = {0}, im(T ) = W

3. Consider an isomorphism T from V to W .If

f1, f2, ...fn

is a basis of V, then T (f1), T (f2), ...T (fn) is

a basis of W .

4. If V and W are isomorphic and dim(V)=n,

then dim(W)=n.
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Proof

1. We must show that T−1 is linear. Consider

two elements f and g of the codomain of

T :

T−1(f + g) = T−1(TT−1(f) + TT−1(g))

= T−1(T (T−1(f) + T−1(g)))

= T−1(f) + T−1(g)

In a similar way, you can show that T−1(kf) =

kT−1(f), for all f in the codomain of T and

all scalars k.

2. ⇒ To find the kernel of T , we have to solve

the equation

T (f) = 0, Apply T−1 on both sides

T−1T (f) = T−1(0),→ f = T−1(0) = 0

so that ker(T ) = 0, as claimed.
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Any g in W can be written as g = T (T−1(g)),

so that im(T ) = W .

⇐ Suppose ker(T ) = {0} and im(T ) = W .

We have to show that T is invertible, i.e.

the equation T (f) = g has a unique solu-

tion f for any g in W .

There is at last one such solution, since

im(T ) = W . Prove by contradiction, con-

sider two solutions f1 and f2:

T (f1) = T (f2) = g

0 = T (f1)− T (f2) = T (f1 − f2)

⇒ f1 − f2 ∈ ker(T )

Since ker(T ) = {0}, f1 − f2 = 0, f1 = f2

3. Span: For any g in W , there exists T−1(g)

in V , we can write

T−1(g) = c1f1 + c2f2 + · · ·+ cnfn



because fi span V . Applying T on both

sides

g = c1T (f1) + c2T (f2) + · · ·+ cnT (fn)

Independence: Consider a relation

c1T (f1) + c2T (f2) + · · ·+ cnT (fn) = 0

or

T (c1f1 + c2f2 + · · ·+ cnfn) = 0.

Since the ker(T) is {0}, we have

c1f1 + c2f2 + · · ·+ cnfn = 0.

Since fi are linear independent, the ci are

all zero.

4. Follows from part (c).



EXAMPLE 6 We are told that the transfor-

mation

B = T (A) =

[
1 2
3 4

]
A−A

[
1 2
3 4

]

from R2×2 to R2×2 is linear. Is T an isomor-

phism?

Solution We need to examine whether trans-

formation T is invertible. First we try to solve

the equation
[

1 2
3 4

]
A−A

[
1 2
3 4

]
= B

for input A. However, the fact that matrix

multiplication is non-commutative gets in the

way, and we are unable to solve for A.

Instead, Consider the kernel of T :

T (A) =

[
1 2
3 4

]
A−A

[
1 2
3 4

]
=

[
0 0
0 0

]
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or [
1 2
3 4

]
A = A

[
1 2
3 4

]

We don’t really need to find this kernal; we

just want to know whether there are nonzero

matrices in the kernel. Since I2 and

[
1 2
3 4

]
is

in the kernel, so that T is not isomophic.

Exercise 4.2: 5, 7, 9, 39



4.3 COORDINATES IN A LINEAR SPACE

By introducing coordinates, we can transform

any n-dimensional linear space into Rn

4.3.1 Coordinates in a linear space

Consider a linear space V with a basis B con-

sisting of f1, f2, ...fn. Then any element f of V

can be written uniquely as

f = c1f1 + c2f2 + · · ·+ cnfn,

for some scalars c1, c2, ..., cn. There scalars are

called the B coordinates of f , and the vector




c1
c2
.
.

cn




is called the B-coordinate vector of f , denoted

by [f ]B.
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The B coordinate transformation T (f) = [f ]B
from V to Rn is an isomorphism (i.e., an invert-

ible linear transformation). Thus, V is isomor-

phic to Rn; the linear spaces V and Rn have

the same structure.

Example. Choose a basis of P2 and thus trans-

form P2 into Rn, for an appropriate n.

Example. Let V be the linear space of upper-

triangular 2 × 2 matrices (that is, matrices of

the form [
a b
0 c

]
.

Choose a basis of V and thus transform V into

Rn, for an appropriate n.



Example. Do the polynomials, f1(x) = 1 +

2x + 3x2, f2(x) = 4 + 5x + 6x2, f3(x) = 7 +

8x + 10x2 from a basis of P2?

Solution

Since P2 is isomorphic to R3, we can use a

coordinate transformation to make this into a

problem concerning R3. The three given poly-

nomials form a basis of P2 if the coordinate

vectors

~v1 =




1
2
3


 , ~v2 =




4
5
6


 , ~v3 =




7
8
9




form a basis of R3.
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Fact Two bases of a linear space consists of

the same number of elements.

Proof Suppose two bases of a linear space V

are given: basis
∐
, consisting of f1, f2, . . . , fn

and basis = with m elements. We need to show

that m = n.

Consider the vectors [f1]=, [f2]=, . . . , [fn]=, these

n vectors form a basis of Rm, since the =-

coordinate transformation is an isomorphism

from V to Rm.

Since all bases of Rm consist of m elements,

we have m = n, as claimed.
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Example. Consider the linear transformation

T (f) = f’ + f” form P2 to P2.

Since P2 is isomorphic to R3, this is essentially

a linear transformation from R3 to R3, given

by a 3×3 matrix B. Let’s see how we can find

this matrix.

Solution

We can write transformation T more explicitly

as

T (a + bx + cx2) = (b + 2cx) + 2c

= (b + 2c) + 2cx.

Next let’s write the input and the output of

T in coordinates with respect to the standard

basis B of P2 consisting of 1, x, x2:

a + bx + cx2 −→ (b + 2c) + 2cx
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See Figure 1

Written in B coordinates, transformation T takes


a
b
c


 into




b + 2c
2c
0


 =




0 1 2
0 0 2
0 0 0







a
b
c




The matrix B =




0 1 2
0 0 2
0 0 0


 is called the matrix

of T. It describes the transformation T if input

and output are written in B coordinates.

Let us summarize our work in a diagram:

See Figure 2



Definition 4.3.2 B-Matrix of a linear trans-

formation

Consider a linear transformation T from V to

V , where V is an n-dimensional linear space.

Let B be a basis of V . Then, there is an

n×n matrix B that transform [f]B into [T (f)]B,

called the B-matrix of T .

[T (f)]B = B[f ]B

Fact 4.3.3 The columns of the B-matrix

of a linear transformation

Consider a linear transformation T from V to

V, and let B be the matrix of T with respect

to a basisB of V consisting of f1, . . . , fn.

Then

B = [[T (f1)] · · · [T (fn)]] .

That is, the columns of B are the B-coordinate

vectors of the transformation of the basis ele-

ments.
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Proof

If

f = c1f1 + c2f2 + · · ·+ cnfn,

then

T (f) = c1T (f1) + c2T (f2) + · · ·+ cnT (fn),

and

[T (f)]B = c1[T (f1)]B+c2[T (f2)]B+· · ·+cn[T (fn)]B

=
[
[T (f1)]B · · · [T (fn)]B

]



c1
..
cn




=
[
[T (f1)]B · · · [T (fn)]B

]
[f ]B



Example. Use Fact 4.3.3 to find the matrix

B of the linear transformation

T(f) = f’ + f” from P2 to P2

with respect to the standard basis B (See Ex-

ample 4.)

Solution

B =
[
[T (1)]B [T (x)]B [T (x2)]B

]

B =
[
[0]B [1]B [2 + 2x]B

]

B =




0 1 2
0 0 2
0 0 0



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Example. Consider the function

T (M) =

[
0 1
0 0

]
M −M

[
0 1
0 0

]

from R2×2 to R2×2. We are told that T is a

linear transformation.

1. Find the matrix B of T with respect to the

standard basis B of R2×2

(Hint: use column by column or definition)

2. Find image and kernel of B.

3. Find image and kernel of T.

4. Find rank and nullity of transformation T.
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Solution
a. Use definition

T (M) = T

[
a b
c d

]
=

[
0 1
0 0

] [
a b
c d

]
−

[
a b
c d

] [
0 1
0 0

]

[
c d
0 0

]
−

[
0 0
a c

]
=

[
c d− a
0 −c

]

Now we write input and output in B-coordinate:

See Figure 3

We can see that

B =




0 0 1 0
−1 0 0 1
0 0 0 0
0 0 −1 0




b. To find the kernel and image of matrix B,

we compute rref(B) first:

rref(B) =




1 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0



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Therefore,




1
0
0
1


,




0
1
0
0


 is a basis of ker(B)

and




0
−1
0
0


,




1
0
0
−1


 is a basis of im(B).

c. To find image of kernel of T , we need to

transform the vectors back into R2×2:

[
1 0
0 1

]
,

[
0 1
0 0

]
is a basis of ker(B)

and

[
0 −1
0 0

]
,

[
1 0
0 −1

]
is a basis of im(B).

d.

rank(T ) = dim(imT ) = 2

and

nullity(T ) = dim(kerT ) = 2.



Fact 4.3.4 The matrices of T with respect

to different bases

Suppose that = and B are two bases of a linear
space V and that This a linear transformation
from V to V .

1. There is an invertible matrix S such that
[f ]= = S[f ]B for all f in V .

2. Let A and B be the = and the B-matrix of
T, respectively. Then matrix A is similar

to B. In fact, B = S−1AS for the matrix S
from part(a).

Proof

a. Suppose basis B consists of f1, f2, . . . , fn. If

f = c1f1 + c2f2 + · · ·+ cnfn,

then

[f ]= = [c1f1 + c2f2 + · · ·+ cnfn]=
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= c1[f1]= + c2[f2]= + · · ·+ cn[fn]=

=
[
[f1]= [f2]= · · · [fn]=

]



c1
c2
· · ·
cn




=

[
[f1]= [f2]= · · · [fn]=

]
︸ ︷︷ ︸

[f ]B

S

b. Consider the following diagram:

See Figure 4.

Performing a “diagram chase,” we see that

AS = SB, or B = S−1AS.

See Figure 5.



Example. Let V be the linear space spanned

by functions ex and e−x. Consider the linear

transformation D(f) = f’ from V to V:

1. Find the matrix A of D with respect to

basis B consisting of ex and e−x.

2. Find the matrix B of D with respect to ba-

sis B consisting of (1
2(e

x+e−x)) and (1
2(e

x−
e−x)). (These two functions are called the

hypeerbolic cosine, cosh(x), and the hypeerbolic

sine, sinh(x), respectively.)

3. Using the proof of Fact 4.3.4 as a guide,

construct a matrix S such that B = S−1AS,

showing that matrix A is similar to B.

Exercise 4.3: 3, 7, 9, 13, 21, 34, 35, 37
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Example Let V be the linear space of all func-

tions of the form f(x) = a cos(x) + b sin(x), a

subspace of C∞. Consider the transformation

T (f) = f ′′ − 2f ′ − 3f

from V to V .

1. Find the matrix B of T with respect to the

basis B consisting of functions cos(x) and

sin(x).

2. Is T an isomorphism?

3. How many solutions f in V does the differ-

ential equation

f ′′(x)− 2f ′(x)− 3f(x) = cos(x)

have?
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