Applied Linear Algebra OTTO BRETSCHER

http://www.prenhall.com/bretscher

Chapter 4
Linear Spaces

Chia-Hui Chang

Email: chia@csie.ncu.edu.tw
National Central University, Taiwan

October 28, 2002

4.1 Introduction to Linear Systems

Definition 4.1.1
Linear spaces A linear space V is a set endowed with
(1) a rule for addition (if f and g are in V , then so is $f+g$) and
(2) a rule for scalar multiplication (if f is in V and k in R , then $k f$ is in V)
such that these operations satisfy the following eight rules (for all f, g, h in V and all c, k in R):

1. $(f+g)+h=f+(g+h)$
2. $f+g=g+f$
3. There is a neutral element n in V such that $f+n=f$, for all f in V. This n is unique and denoted by 0 .
4. For each f in V there is a g in V such that $f+g=0$. this g is unique and denoted by (-f)
5. $k(f+g)=k f+k g$
6. $(c+k) f=c f+k f$
7. $c(k f)=(c k) f$
8. $1 f=f$

Linear Combination

We say that an element f of a linear space is a linear combination of the elements $f_{1}, f_{2}, \ldots, f_{n}$ if

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

for some scalars $c_{1}, c_{2}, \cdots, c_{n}$.

EXAMPLE 9
Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$. Show that $A^{2}=\left[\begin{array}{cc}2 & 3 \\ 6 & 11\end{array}\right]$ is a linear combination of A and I_{2}.

Solution

We have to find scalars c_{1} and c_{2} such that

$$
A^{2}=c_{1} A+c_{2} I_{2}
$$

or

$$
A^{2}=\left[\begin{array}{cc}
2 & 3 \\
6 & 11
\end{array}\right]=c_{1}\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]+c_{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Definition 4.1.2 Subspaces

A subspace W of a linear space V is called a subspace of V if

1. W contains the neutral element 0 of V
2. W is closed under addition (if f and g are in W, then so is $f+g$).
3. W is closed under scalar multiplication (if f is in W and k is a scalar, then $k f$ is in W).

We can summarize parts (2) and (3) by saying that W is closed under linear combinations.

Definition 4.1.3
Span, linear independence, basis, coordinates

Consider the elements $f_{1}, f_{2}, \ldots, f_{n}$ of a linear space V.

1. We say that $f_{1}, f_{2}, \ldots, f_{n}$ span \vee if every f in V can be expressed as a linear combination of $f_{1}, f_{2}, \ldots, f_{n}$.
2. We say that $f_{1}, f_{2}, \ldots, f_{n}$ are (linearly) independent if the equation

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0
$$

has only the trivial solution

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

3. We say that elements $f_{1}, f_{2}, \ldots, f_{n}$ are a basis of V if they span V and are independent. This means that every f in V can be written uniquely as a linear combination

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of f with respect to the basis $f_{1}, f_{2}, \ldots, f_{n}$.

Fact 4.1.4 Dimension

If a linear space V has a basis with n elements, then all other bases of V consist of n elements as well. We say that n is the dimension of V :

$$
\operatorname{dim}(V)=n
$$

Definition 4.1.6 Finite-dimensional linear spaces

A linear spaces V is called finite - dimensional if it has a (finite) basis $f_{1}, f_{2}, \ldots, f_{n}$, so that we can define its dimension $\operatorname{dim}(V)=n$. (See Definition 4.1.4.) Otherwise, the space is called infinite - dimensional.

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35

EXAMPLE

In R^{3}, the prototype linear space, the neutral element is the zero vector, $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

EXAMPLE

In R^{4}, the prototype linear space, the neutral element is the zero vector, $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.

EXAMPLE 3
Let $F(\mathrm{R}, \mathrm{R})$ be the set of all functions from R to R (see Example 1), with the operations

$$
(f+g)(x)=f(x)+g(x)
$$

and

$$
(k f)(x)=k f(x)
$$

Then, $F(R, R)$ is a linear space. The neutral element is the zero function, $f(x)=0$ for all x.

EXAMPLE 11
The differentiable functions form a subspace W of $F(R, R)$.

EXAMPLE 12 Here are three more subspaces of $F(R, R)$:

1. C^{∞}, the smooth functions, that is, functions we can differentiate as many times as we want. This subspace contains all polynomials, exponential functions, $\sin (x)$, and $\cos (x)$, for example.
2. P, the set of all polynomials.
3. P_{n}, the set of all polynomials of degree $\leq n$

EXAMPLE 11
The polynomials of degree ≤ 2, of the form $f(x)=a+b x+c x^{2}$, are a subspace W of the space $F(R, R)$ of all functions from R to R.

EXAMPLE 16
Find a basis of P_{2}, the space of all polynomials of degree ≤ 2, and thus determine the dimension of P_{2}.

EXAMPLE 19

Let $f_{1}, f_{2}, \ldots, f_{n}$ be polynomials. Explain why these polynomials do not span the space P of all polynomials.

This implies that the space P of all polynomials does not have a finite basis $f_{1}, f_{2}, \ldots, f_{n}$.

EXAMPLE 4

If addition and scalar multiplication are given as in Definition 1.3.9, then $R^{2 \times 2}$, the set of all 2×2 matrices, is a linear space. The neutral element is the zero matrix whose entries are all zero $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

EXAMPLE 13
Show that the matrices B that commute with $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$ form a subspace of $R^{2 \times 2}$.

EXAMPLE 14
Consider the set W of all noninvertible 2×2 matrices. Is W a subsequence of $R^{2 \times 2}$?

EXAMPLE 15

Find a basis of $V=R^{2 \times 2}$ and thus determine $\operatorname{dim}(V)$.

EXAMPLE 17
Find a basis of the space V of all matrices B that commute with $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$.

EXAMPLE 6

The linear equation in three unknowns,

$$
a x+b y+c z=d
$$

where a, b, c, and d are constants, from a linear space.

The neutral element is the equation $0=0$ (with $a=b=c=d=0$).

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35

4.2 LINEAR TRANSFORMATIONS AND ISOMORPHISMS

Definition 4.2.1
Linear transformation Consider two linear spaces V and W. A function T from V to W is called a linear transformation if:

$$
T(f+g)=T(f)+T(g) \text { and } T(k f)=k T(f)
$$

for all elements f and g of V and for all scalar k.

Image, Kernel For a linear transformation T from V to W, we let

$$
\operatorname{im}(T)=\{T(f): f \in V\}
$$

and

$$
\operatorname{ker}(T)=\{f \in V: T(f)=0\}
$$

Note that $\operatorname{im}(T)$ is a subspace of co-domain W and $\operatorname{ker}(T)$ is a subspace of domain V.

Rank, Nullity
If the image of T is finite-dimensional, then $\operatorname{dim}(i m T)$ is called the rank of T, and if the kernel of T is finite-dimensional, then $\operatorname{dim}(\operatorname{ker} T)$ is the nullity of T.

If V is finite-dimensional, then the rank-nullity theorem holds (see fact 3.3.9):

$$
\begin{gathered}
\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T) \\
=\operatorname{dim}(\operatorname{im} T)+\operatorname{dim}(\operatorname{ker} T)
\end{gathered}
$$

EXAMPLE 4 Consider the transformation

$$
T\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

from R^{4} to $R^{2 \times 2}$.
We are told that T is a linear transformation. Show that transformation T is invertible.

Solution

The most direct way to show that a function is invertible is to find its inverse. We can see that

$$
T^{-1}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

The linear spaces R^{4} and $R^{2 \times 2}$ have essentially the same structure. We say that the linear spaces R^{4} and $R^{2 \times 2}$ are isomorphic.

Definition 4.2.2 Isomorphisms and isomorphic spaces
An invertible linear transformation is called an isomorphism. We say the linear space V and W are isomorphic if there is an isomorphism from V to W.

EXAMPLE 5 Show that the transformation

$$
T(A)=S^{-1} A S \text { from } R^{2 \times 2} \text { to } R^{2 \times 2}
$$

is an isomorphism, where $S=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Solution

We need to show that T is a linear transformation, and that T is invertible.

Let's think about the linearity of T first:

$$
\begin{aligned}
T(M+N)= & S^{-1}(M+N) S=S^{-1}(M S+N S) \\
& =S^{-1} M S+S^{-1} N S
\end{aligned}
$$

equals $T(M)+T(N)=S^{-1} M S+S^{-1} N S$ and

$$
T(k A)=S^{-1}(k A) S=k\left(S^{-1} A S\right)
$$

equals $k T(A)=k\left(S^{-1} A S\right)$.
The inverse transformation is

$$
T^{-1}(B)=S B S^{-1}
$$

Fact 4.2.3 Properties of isomorphisms

1. If T is an isomorphism, then so is T^{-1}
2. A linear transformation T from V to W is an isomorphism if (and only if)

$$
\operatorname{ker}(T)=\{0\}, \operatorname{im}(T)=W
$$

3. Consider an isomorphism T from V to W.If
$f_{1}, f_{2}, \ldots f_{n}$
is a basis of V , then $T\left(f_{1}\right), T\left(f_{2}\right), \ldots T\left(f_{n}\right)$ is a basis of W.
4. If V and W are isomorphic and $\operatorname{dim}(\mathrm{V})=\mathrm{n}$, then $\operatorname{dim}(W)=n$.

Proof

1. We must show that T^{-1} is linear. Consider two elements f and g of the codomain of T :

$$
\begin{gathered}
T^{-1}(f+g)=T^{-1}\left(T T^{-1}(f)+T T^{-1}(g)\right) \\
=T^{-1}\left(T\left(T^{-1}(f)+T^{-1}(g)\right)\right) \\
=T^{-1}(f)+T^{-1}(g)
\end{gathered}
$$

In a similar way, you can show that $T^{-1}(k f)=$ $k T^{-1}(f)$, for all f in the codomain of T and all scalars k.
2. \Rightarrow To find the kernel of T, we have to solve the equation
$T(f)=0$, Apply T^{-1} on both sides
$T^{-1} T(f)=T^{-1}(0), \rightarrow f=T^{-1}(0)=0$
so that $\operatorname{ker}(T)=0$, as claimed.

Any g in W can be written as $g=T\left(T^{-1}(g)\right)$,
so that $\operatorname{im}(T)=W$.
\Leftarrow Suppose $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=W$. We have to show that T is invertible, i.e. the equation $T(f)=g$ has a unique solution f for any g in W.
There is at last one such solution, since $\operatorname{im}(T)=W$. Prove by contradiction, consider two solutions f_{1} and f_{2} :

$$
\begin{gathered}
T\left(f_{1}\right)=T\left(f_{2}\right)=g \\
0=T\left(f_{1}\right)-T\left(f_{2}\right)=T\left(f_{1}-f_{2}\right) \\
\Rightarrow f_{1}-f_{2} \in \operatorname{ker}(T)
\end{gathered}
$$

Since $\operatorname{ker}(T)=\{0\}, f_{1}-f_{2}=0, f_{1}=f_{2}$
3. Span: For any g in W, there exists $T^{-1}(g)$ in V, we can write

$$
T^{-1}(g)=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

because f_{i} span V. Applying T on both sides

$$
g=c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right)
$$

Independence: Consider a relation

$$
c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right)=0
$$

or

$$
T\left(c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right)=0
$$

Since the $\operatorname{ker}(T)$ is $\{0\}$, we have

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0
$$

Since f_{i} are linear independent, the c_{i} are all zero.
4. Follows from part (c).

EXAMPLE 6 We are told that the transformation

$$
B=T(A)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

from $R^{2 \times 2}$ to $R^{2 \times 2}$ is linear. Is T an isomorphism?

Solution We need to examine whether transformation T is invertible. First we try to solve the equation

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=B
$$

for input A. However, the fact that matrix multiplication is non-commutative gets in the way, and we are unable to solve for A.

Instead, Consider the kernel of T :

$$
T(A)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A=A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

We don't really need to find this kernal; we just want to know whether there are nonzero matrices in the kernel. Since I_{2} and $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is in the kernel, so that T is not isomophic.

Exercise 4.2: 5, 7, 9, 39

4.3 COORDINATES IN A LINEAR SPACE

 By introducing coordinates, we can transform any n-dimensional linear space into R^{n}
4.3.1 Coordinates in a linear space

Consider a linear space V with a basis B consisting of $f_{1}, f_{2}, \ldots f_{n}$. Then any element f of V can be written uniquely as

$$
\mathrm{f}=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{n}$. There scalars are called the B coordinates of f, and the vector

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]
$$

is called the B-coordinate vector of f, denoted by $[f]_{B}$.

The B coordinate transformation $T(f)=[f]_{B}$ from V to R^{n} is an isomorphism (i.e., an invertible linear transformation). Thus, V is isomorphic to R^{n}; the linear spaces V and R^{n} have the same structure.

Example. Choose a basis of P_{2} and thus transform P_{2} into R^{n}, for an appropriate n.

Example. Let V be the linear space of uppertriangular 2×2 matrices (that is, matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] .
$$

Choose a basis of V and thus transform V into R^{n}, for an appropriate n.

Example. Do the polynomials, $f_{1}(x)=1+$ $2 x+3 x^{2}, f_{2}(x)=4+5 x+6 x^{2}, f_{3}(x)=7+$ $8 x+10 x^{2}$ from a basis of P_{2} ?

Solution

Since P_{2} is isomorphic to R^{3}, we can use a coordinate transformation to make this into a problem concerning R^{3}. The three given polynomials form a basis of P_{2} if the coordinate vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

form a basis of R^{3}.

Fact Two bases of a linear space consists of the same number of elements.

Proof Suppose two bases of a linear space V are given: basis \amalg, consisting of $f_{1}, f_{2}, \ldots, f_{n}$ and basis \Im with m elements. We need to show that $m=n$.
Consider the vectors $\left[f_{1}\right]_{\Im},\left[f_{2}\right]_{\Im}, \ldots,\left[f_{n}\right]_{\Im}$, these n vectors form a basis of R^{m}, since the $\Im-$ coordinate transformation is an isomorphism from V to R^{m}.
Since all bases of R^{m} consist of m elements, we have $m=n$, as claimed.

Example. Consider the linear transformation

$$
T(f)=f^{\prime}+f^{\prime \prime} \text { form } P_{2} \text { to } P_{2}
$$

Since P_{2} is isomorphic to R^{3}, this is essentially a linear transformation from R^{3} to R^{3}, given by a 3×3 matrix B. Let's see how we can find this matrix.

Solution

We can write transformation T more explicitly as

$$
\begin{gathered}
\top\left(a+b x+c x^{2}\right)=(\mathrm{b}+2 \mathrm{cx})+2 \mathrm{c} \\
=(\mathrm{b}+2 \mathrm{c})+2 \mathrm{cx} .
\end{gathered}
$$

Next let's write the input and the output of T in coordinates with respect to the standard basis B of P_{2} consisting of $1, x, x^{2}$:

$$
a+b x+c x^{2} \longrightarrow(b+2 c)+2 c x
$$

See Figure 1

Written in B coordinates, transformation T takes $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ into $\left[\begin{array}{c}b+2 c \\ 2 c \\ 0\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

The matrix $B=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$ is called the matrix of \mathbf{T}. It describes the transformation T if input and output are written in B coordinates. Let us summarize our work in a diagram:

See Figure 2

Definition 4.3.2 B-Matrix of a linear transformation

Consider a linear transformation T from V to V, where V is an n-dimensional linear space. Let B be a basis of V. Then, there is an $n \times n$ matrix B that transform $[f]_{B}$ into $[T(f)]_{B}$, called the B-matrix of T.

$$
[T(f)]_{B}=B[f]_{B}
$$

Fact 4.3.3 The columns of the B-matrix of a linear transformation

Consider a linear transformation T from V to V , and let B be the matrix of T with respect to a basis B of V consisting of f_{1}, \ldots, f_{n}. Then

$$
B=\left[\left[T\left(f_{1}\right)\right] \cdots\left[T\left(f_{n}\right)\right]\right] .
$$

That is, the columns of B are the B-coordinate vectors of the transformation of the basis elements.

Proof

If

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

then

$$
\begin{aligned}
& \quad T(f)=c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right), \\
& \text { and }
\end{aligned}
$$

$$
[T(f)]_{B}=c_{1}\left[T\left(f_{1}\right)\right]_{B}+c_{2}\left[T\left(f_{2}\right)\right]_{B}+\cdots+c_{n}\left[T\left(f_{n}\right)\right]_{B}
$$

$$
=\left[\begin{array}{lll}
{\left[T\left(f_{1}\right)\right]_{B}} & \cdots & {\left[T\left(f_{n}\right)\right]_{B}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
. \cdot \\
c_{n}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
{\left[T\left(f_{1}\right)\right]_{B}} & \cdots & {\left[T\left(f_{n}\right)\right]_{B}}
\end{array}\right][f]_{B}
$$

Example. Use Fact 4.3.3 to find the matrix B of the linear transformation

$$
T(f)=f^{\prime}+f^{\prime \prime} \text { from } P_{2} \text { to } P_{2}
$$

with respect to the standard basis B (See Example 4.)

Solution

$$
\begin{gathered}
B=\left[\begin{array}{lll}
{[T(1)]_{B}} & {[T(x)]_{B}} & {\left[T\left(x^{2}\right)\right]_{B}}
\end{array}\right] \\
B=\left[\begin{array}{lll}
{[0]_{B}} & {[1]_{B}} & {[2+2 x]_{B}}
\end{array}\right] \\
B=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Example. Consider the function

$$
T(M)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] M-M\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

from $R^{2 \times 2}$ to $R^{2 \times 2}$. We are told that T is a linear transformation.

1. Find the matrix B of T with respect to the standard basis B of $R^{2 \times 2}$
(Hint: use column by column or definition)
2. Find image and kernel of B.
3. Find image and kernel of T.
4. Find rank and nullity of transformation T.

Solution

a. Use definition

$$
\begin{gathered}
T(M)=T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
{\left[\begin{array}{ll}
c & d \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0 \\
a & c
\end{array}\right]=\left[\begin{array}{cc}
c & d-a \\
0 & -c
\end{array}\right]}
\end{gathered}
$$

Now we write input and output in B-coordinate:
See Figure 3
We can see that

$$
B=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

b. To find the kernel and image of matrix B, we compute rref(B) first:

$$
\operatorname{rref}(B)=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ is a basis of $\operatorname{ker}(B)$
and $\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ -1\end{array}\right]$ is a basis of $\operatorname{im}(B)$.
c. To find image of kernel of T, we need to transform the vectors back into $R^{2 \times 2}$:
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a basis of $\operatorname{ker}(B)$
and $\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is a basis of $\mathrm{im}(B)$.
d.

$$
\operatorname{rank}(T)=\operatorname{dim}(i m T)=2
$$

and

$$
\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker} T)=2
$$

Fact 4.3.4 The matrices of T with respect to different bases
Suppose that \Im and B are two bases of a linear space V and that This a linear transformation from V to V.

1. There is an invertible matrix S such that $[f]_{\Im}=S[f]_{B}$ for all f in V.
2. Let A and B be the \Im and the B-matrix of T , respectively. Then matrix A is similar to B . In fact, $\mathrm{B}=S^{-1} A S$ for the matrix S from part(a).

Proof

a. Suppose basis B consists of $f_{1}, f_{2}, \ldots, f_{n}$. If

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

then

$$
[f]_{\Im}=\left[c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right]_{\Im}
$$

$$
\left.\begin{array}{l}
=c_{1}\left[f_{1}\right]_{\Im}+c_{2}\left[f_{2}\right]_{\Im}+\cdots+c_{n}\left[f_{n}\right]_{\Im} \\
\left.=\left[\begin{array}{lll}
{\left[f_{1}\right]_{\Im}} & {\left[f_{2}\right]_{\Im}} & \cdots
\end{array}\right]\left[f_{n}\right]_{\Im}\right]
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
\cdots \\
c_{n}
\end{array}\right] .
$$

b. Consider the following diagram:

See Figure 4.

Performing a "diagram chase," we see that

$$
A S=S B, \text { or } B=S^{-1} A S
$$

See Figure 5.

Example. Let V be the linear space spanned by functions e^{x} and e^{-x}. Consider the linear transformation $D(f)=f^{\prime}$ from V to V :

1. Find the matrix A of D with respect to basis B consisting of e^{x} and e^{-x}.
2. Find the matrix B of D with respect to basis B consisting of $\left(\frac{1}{2}\left(e^{x}+e^{-x}\right)\right)$ and $\left(\frac{1}{2}\left(e^{x}-\right.\right.$ $\left.e^{-x}\right)$). (These two functions are called the hypeerbolic cosine, cosh(x), and the hypeerbolic sine, $\sinh (x)$, respectively.)
3. Using the proof of Fact 4.3.4 as a guide, construct a matrix S such that $B=S^{-1} A S$, showing that matrix A is similar to B.

Exercise 4.3: 3, 7, 9, 13, 21, 34, 35, 37

Example Let V be the linear space of all functions of the form $f(x)=a \cos (x)+b \sin (x)$, a subspace of C^{∞}. Consider the transformation

$$
T(f)=f^{\prime \prime}-2 f^{\prime}-3 f
$$

from V to V.

1. Find the matrix B of T with respect to the basis B consisting of functions $\cos (x)$ and $\sin (x)$.
2. Is T an isomorphism?
3. How many solutions f in V does the differential equation

$$
f^{\prime \prime}(x)-2 f^{\prime}(x)-3 f(x)=\cos (x)
$$

have?

