Applied Linear Algebra OTTO BRETSCHER

 http://www.prenhall.com/bretscherChapter 3
Subspaces of R^{n} and Their Dimensions

Chia-Hui Chang
Email: chia@csie.ncu.edu.tw
National Central University, Taiwan

3.1 Image and Kernal of a Linear Transformation

Definition. Image

The image of a function consists of all the values the function takes in its codomain. If f is a function from X to Y, then
image(f) $=\{f(x): x \in X\}$

$$
=\{y \in Y: y=f(x), \text { for some } x \in X\}
$$

Example. See Figure 1.

Example. The image of

$$
f(x)=e^{x}
$$

consists of all positive numbers.

Example. $b \in i m(f), c \notin i m(f)$ See Figure 2.
Example. $f(t)=\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right]$ (See Figure 3.)

Example. If the function from X to Y is invertible, then image $(f)=Y$. For each y in Y, there is one (and only one) x in X such that $y=f(x)$, namely, $x=f^{-1}(y)$.

Example. Consider the linear transformation T from R^{3} to R^{3} that projects a vector orthogonally into the $x_{1}-x_{2}$-plane, as illustrate in Figure 4. The image of T is the $x_{1}-x_{2}$-plane in R^{3}.

Example. Describe the image of the linear transformation T from R^{2} to R^{2} given by the matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]
$$

Solution

$T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\begin{aligned}
& =x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3 x_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left(x_{1}+3 x_{2}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

See Figure 5.

Example. Describe the image of the linear transformation T from R^{2} to R^{3} given by the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

Solution
$T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
See Figure 6.

Definition. Consider the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots$, \vec{v}_{n} in R^{m}. The set of all linear combinations of the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is called their span:
$\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right)$
$=\left\{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}: c_{i}\right.$ arbitrary scalars $\}$
Fact The image of a linear transformation

$$
T(\vec{x})=A \vec{x}
$$

is the span of the columns of A. We denote the image of T by $i m(T)$ or $i m(A)$.

Justification

$$
\begin{aligned}
& T(\vec{x})=A \vec{x}=\left[\begin{array}{ccc}
\mid \overrightarrow{v_{1}} & \ldots & \mid \\
\mid & & \overrightarrow{v_{n}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =x_{1} \overrightarrow{v_{1}}+x_{2} \overrightarrow{v_{2}}+\ldots+x_{n} \overrightarrow{v_{n}} .
\end{aligned}
$$

Fact: Properties of the image

(a). The zero vector is contained in $\operatorname{im}(T)$, i.e. $\overrightarrow{0} \in \operatorname{im}(T)$.
(b). The image is closed under addition: If $\vec{v}_{1}, \vec{v}_{2} \in \operatorname{im}(T)$, then $\vec{v}_{1}+\vec{v}_{2} \in \operatorname{im}(T)$.
(c). The image is closed under scalar multiplication: If $\vec{v} \in i m(T)$, then $k \vec{v} \in \operatorname{im}(T)$.

Verification
(a). $\overrightarrow{0} \in R^{m}$ since $A \overrightarrow{0}=\overrightarrow{0}$.
(b). Since $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}} \in i m(T), \exists \overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$ st. $T\left(\overrightarrow{w_{1}}\right)=\overrightarrow{v_{1}}$ and $T\left(\overrightarrow{w_{2}}\right)=\overrightarrow{v_{2}}$. Then, $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}=$ $T\left(\overrightarrow{w_{1}}\right)+T\left(\overrightarrow{w_{2}}\right)=T\left(\overrightarrow{w_{1}}+\overrightarrow{w_{2}}\right)$, so that $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}$ is in the image as well.
(c). $\exists \vec{w}$ st. $T(\vec{w})=\vec{v}$. Then $k \vec{v}=k T(\vec{w})=$ $T(k \vec{w})$, so $k \vec{v}$ is in the image.

Example. Consider an $n \times n$ matrix A. Show that $\operatorname{im}\left(A^{2}\right)$ is contained in $\operatorname{im}(A)$.

Hint: To show \vec{w} is also in $\operatorname{im}(A)$, we need to find some vector \vec{u} st. $\vec{w}=A \vec{u}$.

Solution

Consider a vector \vec{w} in im(A^{2}). There exists a vector \vec{v} st. $\vec{w}=A^{2} \vec{v}=A A \vec{v}=A \vec{u}$ where $\vec{u}=A \vec{v}$.

Definition. Kernel

The kernel of a linear transformation $T(\vec{x})=$ $A \vec{x}$ is the set of all zeros of the transformation (i.e., the solutions of the equation $A \vec{x}=\overrightarrow{0}$. See Figure 9.

We denote the kernel of T by $\operatorname{ker}(T)$ or $\operatorname{ker}(A)$.

For a linear transformation T from R^{n} to R^{m},

- $\operatorname{im}(T)$ is a subset of the codomain R^{m} of T, and
- $\operatorname{ker}(T)$ is a subset of the domain R^{n} of T.

Example. Consider the orthogonal project onto the $x_{1}-x_{2}$-plane, a linear transformation T from R^{3} to R^{3}. See Figure 10.

The kernel of T consists of all vectors whose orthogonal projection is $\overrightarrow{0}$. These are the vectors on the x_{3}-axis (the scalar multiples of \vec{e}_{3}).

Example. Find the kernel of the linear transformation T from R^{3} to R^{2} given by

$$
T(\vec{x})=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]
$$

Solution
We have to solve the linear system

$$
\begin{gathered}
T(\vec{x})=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right] \vec{x}=\overrightarrow{0} \\
\operatorname{rref}\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 2 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrc|r}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \\
\left\lvert\, \begin{array}{l}
x_{1} \\
\\
\\
x_{2}+ \\
\hline
\end{array} x_{3}=0\right. \\
\\
{\left[\begin{array}{r}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]}
\end{gathered}
$$

The kernel is the line spanned by $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$.

Example. Find the kernel of the linear transformation T from R^{5} to R^{4} given by the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 5 & 4 & 3 & 2 \\
1 & 6 & 6 & 6 & 6 \\
1 & 7 & 8 & 10 & 12 \\
1 & 6 & 6 & 7 & 8
\end{array}\right]
$$

Solution We have to solve the linear system $\mathrm{T}(\vec{x})=\mathrm{A} \overrightarrow{0}=\overrightarrow{0}$

$$
\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 0 & -6 & 0 & 6 \\
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The kernel of T consists of the solutions of the system

$$
\left\lvert\, \begin{array}{llll}
x_{1} & -6 x_{3} & +6 x_{5}=0 \\
& x_{2}+2 x_{3} & -2 x_{5}=0 \\
& & x_{4} & +2 x_{5}=0
\end{array}\right.
$$

The solution are the vectors

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
6 s-6 t \\
-2 s+2 t \\
s \\
-2 t \\
t
\end{array}\right]
$$

where s and t are arbitrary constants.
$\operatorname{ker}(T)=\left[\begin{array}{r}6 s-6 t \\ -2 s+2 t \\ s \\ -2 t \\ t\end{array}\right]: \mathrm{s}, \mathrm{t}$ arbitrary scalars
We can write

$$
\left[\begin{array}{r}
6 s-6 t \\
-2 s+2 t \\
s \\
-2 t \\
t
\end{array}\right]=\mathrm{s}\left[\begin{array}{r}
6 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
-6 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

This shows that

$$
\operatorname{ker}(T)=\operatorname{span}\left(\left[\begin{array}{r}
6 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-6 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]\right)
$$

Fact 3.1.6: Properties of the kernel
(a) The zero vector $\overrightarrow{0}$ in R_{n} in in $\operatorname{ker}(T)$.
(b) The kernel is closed under addition.
(c) The kernel is closed under scalar multiplication.

The verification is left as Exercise 49.
Fact 3.1.7

1. Consider an $m * n$ matrix A then

$$
\operatorname{ker}(\mathrm{A})=\{\overrightarrow{0}\}
$$

if (and only if) $\operatorname{rank}(\mathrm{A})=n$. (This implies that $n \leq m$.)

Check exercise 2.4 (35)
2. For a square matrix A,

$$
\operatorname{ker}(\mathrm{A})=\{\overrightarrow{0}\}
$$

if (and only if) A is invertible.

Summary

Let A be an $n * n$ matrix. The following statements are equivalent (i.e.,they are either all true or all false):

1. A is invertible.
2. The linear system $\mathrm{A} \vec{x}=\vec{b}$ has a unique solution \vec{x}, for all \vec{b} in R^{n}. (def 2.3.1)
3. $\operatorname{rref}(\mathrm{A})=I_{n}$. (fact 2.3.3)
4. $\operatorname{rank}(A)=n .(\operatorname{def} 1.3 .2)$
5. $\mathrm{im}(\mathrm{A})=R^{n}$. (ex 3.1.3b)
6. $\operatorname{ker}(A)=\{\overrightarrow{0}\}$. (fact 3.1.7)

Homework 3.1: 5, 6, 7, 14, 15, 16, 31, 33, 42, 43

3.2 Subspaces of R^{n} Bases and Linear Independence

Definition. Subspaces of R^{n}
A subset W of R^{n} is called a subspace of R^{n} if it has the following properties:
(a). W contains the zero vector in R^{n}.
(b). W is closed under addition.
(c). W is closed under scalar multiplication.

Fact 3.2.2
If T is a linear transformation from R^{n} to R^{m}, then
$\diamond \operatorname{ker}(T)$ is a subspace of R^{n}
$\diamond i m(T)$ is a subspace of R^{m}

Example. Is $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in R^{2}: x \geq 0, y \geq 0\right\}$ a subspace of R^{2} ?

See Figure 1, 2.
Example. Is $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in R^{2}: x y \geq 0\right\}$ a subspace of R^{2} ?

See Figure 3, 4.

Example. Show that the only subspaces of R^{2} are: $\{\overrightarrow{0}\}$, any lines through the origin, and R^{2} itself.

Similarly, the only subspaces of R^{3} are: $\{\overrightarrow{0}\}$, any lines through the origin, any planes through $\overrightarrow{0}$, and R^{3} itself.

Solution

Suppose W is a subspace of R^{2} that is neither the set $\{\overrightarrow{0}\}$ nor a line through the origin. We have to show $W=R^{2}$.

Pick a nonzero vector $\overrightarrow{v_{1}}$ in W. (We can find such a vector, since W is not $\{\overrightarrow{0}\}$.) The subspace W contains the line L spanned by $\overrightarrow{v_{1}}$, but W does not equal L. Therefore, we can find a vector $\overrightarrow{v_{2}}$ in W that is not on L (See Figure 5). Using a parallelogram, we can express any vector \vec{v} in R^{2} as a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$. Therefore, \vec{v} is contained in W (Since W is closed under linear combinations). This shows that $W=R^{2}$, as claimed.

A plane E in R^{3} is usually described either by

$$
x_{1}+2 x_{2}+3 x_{3}=0
$$

or by giving E parametrically, as the span of two vectors, for example,

$$
\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

In other words, E is described either as

$$
\operatorname{ker}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

or

$$
i m\left[\begin{array}{rr}
1 & 1 \\
1 & -2 \\
-1 & 1
\end{array}\right]
$$

Similarly, a line L in R^{3} may be described either parametrically, as the span of the vector

$$
\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

or by two linear equations

$$
\left|\begin{array}{c}
x_{1}-x_{2}-x_{3}=0 \\
x_{1}-2 x_{2}+x_{3}=0
\end{array}\right|
$$

Therfore

$$
L=\operatorname{im}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{llr}
1 & -1 & -1 \\
1 & -2 & 1
\end{array}\right]
$$

A subspace of R^{n} is uaually presented either as the solution set of a homogeneous linear system (as a kernel) or as the span of some vectors (as an image).

Any subspace of R^{n} can be represented as the image of a matrix.

Bases and Linear Independence

Example. Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 3 \\
1 & 3 & 2 & 4
\end{array}\right]
$$

Find vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{m}}$ in R^{3} that span the image of A. What is the smallest number of vectors needed to span the image of A ?

Solution

We know from Fact 3.1.3 that the image of A spanned by the columns of A,

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right], \overrightarrow{v_{4}}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

Figure 6 show that we need only $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ to span the image of A. Since $\overrightarrow{v_{3}}=\overrightarrow{v_{2}}$ and $\overrightarrow{v_{4}}=$ $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}$, the vectors $\overrightarrow{v_{3}}$ and $\overrightarrow{v_{4}}$ are redundant; that is, they are linear combinations of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$:

$$
\begin{aligned}
\operatorname{im}(A) & =\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}\right) \\
& =\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right) .
\end{aligned}
$$

The image of A can be spanned by two vectors, but not by one vectors alone.

Definition. Linear independence; basis
Consider a sequence $\vec{v}_{1}, \ldots, \vec{v}_{m}$ of vectors in a subspace V of R^{n}.

The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are called linearly independent if nono of them is a linear combination of the others.

We say that the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ form a basis of V if they span V and are linearly independent.

See last example. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ span

$$
V=i m(A)
$$

but they are linearly dependent, because $\overrightarrow{v_{4}}=\overrightarrow{v_{2}}+\overrightarrow{v_{3}}$. Therefore, they do not form a basis of V. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, on the other hand, do span V and are linearly independent.

Definition. Linear relations

Consider the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n}. An equation of the form

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

is called a (linear) relation among the vectors \vec{v}_{i}. There is always the trievial relation, with $c_{1}=c_{2}=\cdots=c_{m}=0$. Nontrivial relations may or may not exist among the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n}.

Fact 3.2.5
The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n} are linearly dependent if (and only if) there are nontrivial relations among them.

Proof
\Rightarrow If one of the $\vec{v}_{i} \mathrm{~s}$ a linear combination of the others,
$\vec{v}_{i}=c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}+c_{i+1} \vec{v}_{i+1}+\ldots+c_{m} \vec{v}_{m}$ then we can find a nontrivial relation by subtracting \vec{v}_{i} from both sides of the equations:
$c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}-\vec{v}_{i}+c_{i+1} \vec{v}_{i+1}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}$
\Leftarrow Conversely, if there is a nontrivial relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{i} \vec{v}_{i}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

then we can solve for \vec{v}_{i} and express \vec{v}_{i} as a linear combination of the other vectors.

Example. Determine whether the following vectors are linearly independent

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{r}
6 \\
7 \\
8 \\
9 \\
10
\end{array}\right],\left[\begin{array}{r}
2 \\
3 \\
5 \\
7 \\
11
\end{array}\right],\left[\begin{array}{r}
1 \\
4 \\
9 \\
16 \\
25
\end{array}\right] .
$$

Solution

TO find the relations among these vectors, we have to solve the vector equation
$c_{1}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]+c_{2}\left[\begin{array}{r}6 \\ 7 \\ 8 \\ 9 \\ 10\end{array}\right]+c_{3}\left[\begin{array}{r}2 \\ 3 \\ 5 \\ 7 \\ 11\end{array}\right]+c_{4}\left[\begin{array}{r}1 \\ 4 \\ 9 \\ 16 \\ 25\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
or

$$
\left[\begin{array}{rrrr}
1 & 6 & 2 & 1 \\
2 & 7 & 3 & 4 \\
3 & 8 & 5 & 9 \\
4 & 9 & 7 & 16 \\
5 & 10 & 11 & 25
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

In other words, we have to find the kernal of A. To do so, we compute $\operatorname{rref}(A)$. Using technology, we find that

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This shows the kernel of A is $\{\overrightarrow{0}\}$, because there is a leading 1 in each column of $\operatorname{rref}(A)$. There is only the trivial relation among the four vectors and they are therefore linearly independent.

Fact 3.2.6
The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n} are linearly independent if (and only if)

$$
\operatorname{ker}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]=\{\overrightarrow{0}\}
$$

or, equivalently, of

$$
\operatorname{rank}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]=m
$$

This condition implies that $m \leq n$.

Fact 3.2.7
Consider the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in a subspace V of R^{n}.
The vectors \vec{v}_{i} are a basis of V if (and only if) every vector \vec{v} in V can be expressed uniquely as a linear combination of the vectors \vec{v}_{i}.

Proof

\Rightarrow Suppose vectors \vec{v}_{i} are a basis of V, and consider a vector \vec{v} in V. Since the basis vectors span V, the vector \vec{v} can be written as a linear combination of the \vec{v}_{i}. We have to demonstrate that this representation is unique. If there are two representations:

$$
\begin{aligned}
& \vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{m} \vec{v}_{m} \\
& =d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\ldots+d_{m} \vec{v}_{m}
\end{aligned}
$$

By subtraction, we find

$$
\overrightarrow{0}=\left(c_{1}-d_{1}\right) \vec{v}_{1}+\left(c_{2}-d_{2}\right) \vec{v}_{2}+\ldots+\left(c_{m}-d_{m}\right) \vec{v}_{m}
$$

Since the \vec{v}_{i} are linearly independent, $c_{i}-d_{i}=0$, or $c_{i}=d_{i}$, for all i.
\Leftarrow, suppose that each vector in V can be expressed uniquely as a linear combination of the vectors \vec{v}_{i}. Clearly, the \vec{v}_{i}. span V. The zero vector can be expressed uniquely as a linear combination of the \vec{v}_{i}, namely, as

$$
\overrightarrow{0}=0 \vec{v}_{1}+0 \vec{v}_{2}+\ldots+0 \vec{v}_{m}
$$

This means there is only the trivial relation among the \vec{v}_{i} : they are linearly independent.

See Figure 7. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ do not form a basis of E, since every vector in E can be expressed in more than one way as a linear combination of the \vec{v}_{i}. For example,

$$
\vec{v}_{4}=\vec{v}_{1}+\vec{v}_{2}+0 \vec{v}_{3}+0 \vec{v}_{4}
$$

but also

$$
\vec{v}_{4}=0 \vec{v}_{1}+0 \vec{v}_{2}+0 \vec{v}_{3}+1 \vec{v}_{4} .
$$

Homework 3.2: 3, 5, 9, 17, 18, 19, 29, 30, 39

3.3 The Dimension of a Subspace of R^{n}

Fact 3.3.2
All bases of a subspace V of R^{n} consist of the same number of vectors.

Hint Basis: linear independent and span V (Def 3.2.3)

Fact 3.3.1
Consider vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{p}}$ and $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \ldots$, \vec{w}_{q} in a subspace V of R^{n}. If the vectors $\overrightarrow{v_{i}}$ are linearly independent, and the vectors \vec{w}_{j} span V, then $\mathrm{p} \leq \mathrm{q}$.

Proof 3.3.2
Consider two bases $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{p}}$ and $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$, $\ldots, \overrightarrow{w_{q}}$ of V. Since the $\overrightarrow{v_{i}}$ are linearly independent, and the vectors \vec{w}_{j} span V, we have $p \leq q$. Like wise, since the \vec{w}_{j} are linearly independent and the $\overrightarrow{v_{i}}$ span V, we have $q \leq p$. Therefore, $p=q$.

Proof 3.3.1

$$
\begin{gathered}
\vec{v}_{1} \\
\vdots \\
\vdots \\
\vec{v}_{p}
\end{gathered}=a_{11} \vec{w}_{1}+\cdots+a_{1 q} \vec{a}_{q} \vec{w}_{1}+\cdots+\begin{gathered}
\vdots \\
a_{p q} \vec{w}_{q}
\end{gathered}
$$

Write each of these equations in matrix form:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{w}_{1} & \ldots & \vec{w}_{q} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{1 q}
\end{array}\right]=\vec{v}_{1}} \\
{\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{w}_{1} & \ldots & \vec{w}_{q} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
a_{p 1} \\
\vdots \\
a_{p q}
\end{array}\right]=\vec{v}_{p}}
\end{gathered}
$$

Combine all these equations into one matrix equation:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{w}_{1} & \ldots & \vec{w}_{q} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \ldots & a_{p 1} \\
\vdots & & \vdots \\
a_{1 q} & \ldots & a_{p q}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \ldots & \vec{v}_{p} \\
\mid & & \mid
\end{array}\right]} \\
M A=N
\end{gathered}
$$

Because

$$
A \vec{x}=\overrightarrow{0}, M A \vec{x}=N \vec{x}=\overrightarrow{0}
$$

The kernel of A is contained in the kernel of N.

Since the kernel of N is $\{\overrightarrow{0}\}$ (since the \vec{v}_{i} are linearly independent), the kernel of A is $\{\overrightarrow{0}\}$ as well.

This implies that $\operatorname{rank}(A)=p \leq q$ (by Fact 3.1.7).

Definition. Dimension

Consider a subspace V of R^{n}. The number of vectors in a basis of V is called the dimension of V, denoted by $\operatorname{dim}(V)$.

What is the dimension R^{n} itself?

Clearly, R^{n} ought to have dimension n. This is indeed the case: the vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ form a basis of R^{n} called its standard basis.

A plane E in R^{3} is two-dimensional.

Fact 3.3.4
Consider a subspace V of R^{n} with $\operatorname{dim}(V)=m$

1. We can find at most m linearly independent vectors in V.
2. We need at least m vectors to span V.
3. If m vectors in V are linearly independent, then they form a basis of V.
4. If m vectors span V, then they form a basis of V.

Proof 3.3.4 (3)
Consider linearly independent vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, $\ldots, \overrightarrow{v_{m}}$ in V. We have to show that the \vec{v}_{i} span V. Pick a \vec{v} in V. Then the vectors $\overrightarrow{v_{1}}$, $\overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}, \vec{v}$ will be linearly dependent, by (1). Therefore, there is a nontrivial relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}+c \vec{v}=\overrightarrow{0}
$$

We can solve the relation for \vec{v} and express it as a linear combination of the \vec{v}_{i}. In other words, the \vec{v}_{i} span V.

Finding a Basis of the Kernel

Example. Find a basis of the kernel of the following matrix, and determine the dimension of the kernel:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
2 & 4 & 1 & 9 & 5
\end{array}\right]
$$

Solution

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
2 & 4 & 1 & 9 & 5
\end{array}\right]-2(I) \\
& \longrightarrow \operatorname{rref}(A)=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 3 & 5
\end{array}\right]
\end{aligned}
$$

This corresponds to the system

$$
\left|\begin{array}{r}
3 x_{4} \\
x_{1}+2 x_{2}=0 \\
x_{3}+3 x_{4}+5 x_{5}=0
\end{array}\right|
$$

with general solution

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 s-3 t \\
s \\
-3 t-5 r \\
t \\
r
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
0 \\
-3 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
0 \\
0 \\
-5 \\
0 \\
1
\end{array}\right]
$$

The tree vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ span $\operatorname{ker}(A)$ and form a basis of the kernel of A (i.e. linearly independent).
$\operatorname{dim}(\operatorname{ker} \mathrm{A})=($ number of nonleading variables $)$
$=($ number of columns of $A)$-(number of leading variables)
$=($ number of columns of $A)-\operatorname{rank}(A)$
$=5-2=3$
Fact 3.3.5
Consider an $m \times n$ matrix A.

$$
\operatorname{dim}(\operatorname{ker} A)=n-\operatorname{rank}(A)
$$

Finding a Basis of the Image

Example. Find a basis of the image of the linear transformation T from R^{5} to R^{4} with matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 \\
1 & 1 & -1 & -1 & 0
\end{array}\right]
$$

and determine the dimenson of the image.

Solution

We know the columns of A span the image of A, but they are linearly dependent in this example. To construct a basis of im(A), we could find a relation among the columns of A, express one of the columns as linear combinartion of the others, and then omit this vector as redundant.

We first find the reduced row-echelon form of A:

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
1 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 \\
1 & 1 & -1 & -1 & 0
\end{array}\right] \\
& \begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5}
\end{array} \\
& E=\operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 0 & 1 & 2 & 0 \\
0 & 1 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\vec{w}_{1} & \vec{w}_{2} & \vec{w}_{3} & \vec{w}_{4} & \vec{w}_{5}
\end{array}
\end{aligned}
$$

By inspection, we can express any column of $\operatorname{rref}(A)$ that does not contain a leading 1 as a linear combination of earlier columns that do contain a leading 1.

$$
\vec{w}_{3}=\vec{w}_{1}-2 \vec{w}_{2}, \text { and } \vec{w}_{4}=2 \vec{w}_{1}-3 \vec{w}_{2}
$$

It may surprise you that the same relationships hold among the corresponding columns of the matrix A.

$$
\vec{v}_{3}=\vec{v}_{1}-2 \vec{v}_{2}, \text { and } \vec{v}_{4}=2 \vec{v}_{1}-3 \vec{v}_{2}
$$

Since $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$, and $\overrightarrow{w_{5}}$ are linearly independent, so are the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{5}}$. (Why?)

The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{5}}$ alone span the image of A, since any vector \vec{v} in the image of A can be expressed as

$$
\begin{gathered}
\overrightarrow{v^{2}}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}+c_{4} \overrightarrow{v_{4}}+c_{5} \overrightarrow{v_{5}} \\
=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3}\left(\overrightarrow{v_{1}}-2 \overrightarrow{v_{2}}\right)+c_{4}\left(2 \overrightarrow{v_{1}}-3 \overrightarrow{v_{2}}\right)+c_{5} \overrightarrow{v_{5}}
\end{gathered}
$$

Therefore, the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{5}}$ form a basis of $\operatorname{im}(A)$, and thus $\operatorname{dim}(\operatorname{im} A)=3$.

Definition.

A column of a matrix A is called a pivot column if the corresponding column of $\operatorname{rref}(A)$ contains a leading 1.

Fact 3.3.7 The pivot columns of a matrix A form a basis of $\operatorname{im}(A)$.

Fact 3.3.8 For any matrix A,

$$
\operatorname{rank}(A)=\operatorname{dim}(i m A) .
$$

Fact 3.3.9 Rank-Nullity Theorem If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(\operatorname{im} A)=n .
$$

The dimension of the kernel of matrix A is called the nullity of A :

$$
\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{ker} A)
$$

Using this definition and Fact 3.3.8, we can write:

$$
\operatorname{nullity}(A)+\operatorname{rank}(A)=n .
$$

\Rightarrow The larger the kernel, the smaller the image, and vice versa.

Bases of R^{n}
How can we tell n given vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ in R^{n} form a basis?

The \vec{v}_{i} form a basis of R^{n} if every vector \vec{b} in R^{n} can be written uniquely as a linear combination of the \vec{v}_{i} :
$\vec{b}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\ \mid & \mid & & \mid\end{array}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$
The linear system

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\vec{b}
$$

has a unique solution if (only if) the $n \times n$ matrix

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

is invertible.

Fact 3.3.10 The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ in R^{n} form a basis of R^{n} if (and only if) the matrix $\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n} \\ \mid & \mid & & \mid\end{array}\right]$
is invertible.

Example. Are the following vectors a basis of R^{4} ?

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
2 \\
9 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
4 \\
4 \\
8
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
1 \\
8 \\
1 \\
5
\end{array}\right], \overrightarrow{v_{4}}=\left[\begin{array}{l}
1 \\
9 \\
7 \\
3
\end{array}\right]
$$

Solution

We have to check whether the matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 4 & 8 & 9 \\
9 & 4 & 1 & 7 \\
1 & 8 & 5 & 3
\end{array}\right]
$$

is invertible. Using technology, we find that

$$
\operatorname{reff}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 4 & 8 & 9 \\
9 & 4 & 1 & 7 \\
1 & 8 & 5 & 3
\end{array}\right]=I_{4}
$$

Thus, the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ form a basis of R^{4}

Summary 3.3.11

Consider an $n \times n$ matrix

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Then the following statements are equivalent:

1. A is invertible.
2. The linear system $A \vec{x}=\vec{b}$ has a unique solution \vec{x}, for all \vec{b} for all \vec{b} in R^{n}.
3. $\operatorname{rref}(A)=I_{n}$.
4. $\operatorname{rank}(A)=n$.
5. $i m(A)=R^{n}$.
6. $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.
7. The \vec{v}_{i} are a basis of R^{n}.
8. The \vec{v}_{i} span R^{n}.
9. The \vec{v}_{i} are linearly independent.

Homework $3.36,7,8,17,18,27,31,33$, 39, 58, 59

Exercise 49: Find a basis of the row space of the matrix:

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 51: Consider an arbitrary $m \times n$ matrix A.

1. What is the relationship between the row spaces of A and $E=\operatorname{rref}(A)$?
2. What is the relationship between the dimension of the row space of A and the rank of A ?

3.4 COORDINATES

EXAMPLE 1

Let V be the plane in R^{3} with equation $x_{1}+2 x_{2}+3 x_{3}=0$, a two-dimensional subspace of R^{3}. We can describe a vector in this plane by its spatial (3D)coordinates; for example, vector

$$
\vec{x}=\left[\begin{array}{r}
5 \\
-1 \\
-1
\end{array}\right]
$$

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

Consider any two vectors in plane V that aren't parallel, e.g.

$$
\overrightarrow{v_{1}}=\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right] \text { and } \overrightarrow{v_{2}}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

See Figure 1, where we label the new axes c_{1} and c_{2}, with the new coordinate grid defined by vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.

Note that the $c_{1}-c_{2}$ coordinates of vector $\overrightarrow{v_{1}}$ is $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and the coordinates of vector $\overrightarrow{v_{2}}$ is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, respectively.

For a vector \vec{x} in plane V, we can find the scalars c_{1} and c_{2} such that

$$
\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}} .
$$

For example, $\vec{x}=\left[\begin{array}{r}5 \\ -1 \\ -1\end{array}\right]=3\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]+2\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$

Therefore, the $c_{1}-c_{2}$ coordinates of \vec{x} are

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

See Figure 3.

Let's denote the basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ of V by B
(Fraktur B). Then, the coordinate vector of \vec{x} with respect to B is denoted by $[\vec{x}]_{B}$:

$$
\text { If } \vec{x}=\left[\begin{array}{r}
5 \\
-1 \\
-1
\end{array}\right] \text {, then }[\vec{x}]_{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Definition 3.4.1
Coordinates in a subspace of R^{n} Consider a basis B of a subspace V of R^{n}, consisting of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}$. Any vector \vec{x} in V can be written uniquely as

$$
\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{m} \overrightarrow{v_{m}}
$$

The scalars $c_{1}, c_{1}, \ldots, c_{m}$ are called the B coordinates of \vec{x}, and the vector

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\ldots \\
c_{m}
\end{array}\right]
$$

is called the B -coordinate vector of \vec{x}, denoted by $[\vec{x}]_{B}$.

Note that

$$
\vec{x}=S[\vec{x}]_{B}
$$

where $S=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\ \mid & \mid & & \mid\end{array}\right]$, an $\mathrm{n} \times m$ matrix.

EXAMPLE 2
Consider the basis B of R^{2} consisting of vectors
$\overrightarrow{v_{1}}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{r}1 \\ 3\end{array}\right]$
a. If $\vec{x}=\left[\begin{array}{l}10 \\ 10\end{array}\right]$, find $[\vec{x}]_{B}$
b. If $[\vec{x}]_{B}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$, find \vec{x}

Solution

a. To find the coordinates of vector \vec{x}, we need to write \vec{x} as a linear combination of the basis vectors:

$$
\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}, \text { or }\left[\begin{array}{l}
10 \\
10
\end{array}\right]=c_{1}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
-1 \\
3
\end{array}\right]
$$

Alternatively, we can solve the equation

$$
\vec{x}=S[\vec{x}]_{B}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right][\vec{x}]_{B}
$$

for $[\vec{x}]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$

$$
\begin{aligned}
& {[\vec{x}]_{B}=S^{-1} \vec{x}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right]^{-1}\left[\begin{array}{l}
10 \\
10
\end{array}\right]} \\
& =\frac{1}{10}\left[\begin{array}{rr}
3 & 1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
10
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

b. By definition of coordinates, $[\vec{x}]_{B}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ means that
$\vec{x}=2 \overrightarrow{v_{1}}+(-1) \overrightarrow{v_{2}}=2\left[\begin{array}{l}3 \\ 1\end{array}\right]+(-1)\left[\begin{array}{r}-1 \\ 3\end{array}\right]=\left[\begin{array}{r}7 \\ -1\end{array}\right]$

Alternatively, use the formula

$$
\vec{x}=S[\vec{x}]_{B}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
7 \\
-1
\end{array}\right]
$$

EXAMPLE 3

Let L be the line in R^{2} spanned by vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Let T be the linear transformation from R^{2} to R^{2} that projects any vector orthogonally onto line L, as shown in Figure 5.

1. In $\vec{x}_{1}-\vec{x}_{2}$ coordinate system (See Figure 5): Sec 2.2 (pp. 59).
2. In $c_{1}-c_{2}$ coordinate system (See Figure 6): T transforms vector $\left[\begin{array}{c}c_{1} \\ c_{2}\end{array}\right]$ into $\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$.
That is, T is given by the matrix $B=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, since $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$

The transforms from $[\vec{x}]_{B}$ into $[T(\vec{x})]_{B}$ is called the B-matrix of T :

$$
[T(\vec{x})]_{B}=B[\vec{x}]_{B}
$$

Definition 3.4.2
The B-matrix of a linear transformation
Consider a linear transformation T from R^{n} to R^{n} and a basis B of R^{n}. The $n \times n$ matrix B that transforms $[\vec{x}]_{B}$ into $[T(\vec{x})]_{B}$ is called the B-matrix of T :

$$
[T(\vec{x})]_{B}=\mathrm{B}[\vec{x}]_{B}
$$

for all \vec{x} in R^{n}.

Fact 3.4.3 The columns of the B-matrix of a linear transformation
Consider a linear transformation T from R^{n} to R^{n} and a basis B of R^{n} consisting of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$. Then, the B-matrix of T is

$$
B=\left[\left[T\left(\overrightarrow{x_{1}}\right)\right]_{B}\left[T\left(\overrightarrow{x_{2}}\right)\right]_{B} \cdots\left[T\left(\overrightarrow{x_{n}}\right)\right]_{B}\right]
$$

That is, the columns of B are the B-coordinate vectors of $\mathrm{T}\left(\overrightarrow{v_{1}}\right), \mathrm{T}\left(\overrightarrow{v_{2}}\right), \ldots, \mathrm{T}\left(\overrightarrow{v_{n}}\right)$.

EXAMPLE 4
Consider two perpendicular unit vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ in R^{3}. Form the basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}=\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}$ of R^{3}; let's denote this basis by B. Find the B matrix B of the linear transformation $\mathrm{T}(\vec{x})=\overrightarrow{v_{1}}$ $\times \vec{x}$.
(see Exercise 2.1: 44 on pp. 49, $\left.\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \times\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left[\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right]\right)$

Solution
Use Fact 3.4.3 to construct B column by column:

$$
\begin{aligned}
& B=\left[\left[T\left(\overrightarrow{x_{1}}\right)\right]_{B}\left[T\left(\overrightarrow{x_{2}}\right)\right]_{B} \ldots\left[T\left(\overrightarrow{x_{n}}\right)\right]_{B}\right] \\
& =\left[\left[\overrightarrow{v_{1}} \times \overrightarrow{v_{1}}\right]_{B}\left[\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right]_{B}\left[\overrightarrow{v_{1}} \times \overrightarrow{v_{3}}\right]_{B}\right] \\
& =\left[[\overrightarrow{0}]_{B}\left[\overrightarrow{v_{3}}\right]_{B}\left[-\overrightarrow{v_{2}}\right]_{B}\right] \\
& =\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

EXAMPLE 5

Let T be the linear transformation from R^{2} to R^{2} that projects any vector orthogonally onto the line L spanned by $\left[\begin{array}{l}3 \\ 1\end{array}\right]$. In Example 3, we found that the matrix of T with respect to the basis B consisting of $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ is

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

What is the relation ship between B and the standard matrix A of T (such that $\mathrm{T}(\vec{x})=\mathrm{A} \vec{x}$) ?

Solution

Recall from Definition 3.4.1 that

$$
\vec{x}=S[\vec{x}]_{B^{\prime}}, \text { where } \mathrm{S}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right]
$$

and consider the following diagram: (Figure 7)

Note that $\mathrm{T}(\vec{x})=\mathrm{AS}[\vec{x}]_{B}$
and also $\mathrm{T}(\vec{x})=\mathrm{SB}[\vec{x}]_{B}$,
so that $\mathrm{AS}[\vec{x}]_{B}=\mathrm{SB}[\vec{x}]_{B}$ for all \vec{x}.
Thus,

$$
\mathrm{AS}=\mathrm{SB} \text { and } \mathrm{A}=\mathrm{SB} S^{-1}
$$

Now we can find the standard matrix A of T :
$\mathrm{A}=\mathrm{SB} S^{-1}$
$=\left[\begin{array}{rr}3 & -1 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left(\frac{1}{10}\left[\begin{array}{rr}3 & 1 \\ -1 & 3\end{array}\right]\right)$
$=\left[\begin{array}{ll}0.9 & 0.3 \\ 0.3 & 0.1\end{array}\right]$
Alternatively, we could use Fact 2.2.5 to construct matrix A. The point here was to explore the relationship between matrices A and B .

Fact 3.4.4
Standard matrix versus B-matrix of a linear transformation
Consider a linear transformation T from R^{n} to R^{n} and a basis B of R^{n} consisting of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$. Let B be the B-matrix of T and let A be the standard matrix of T (such that $\mathrm{T}(\vec{x})=\mathrm{A} \vec{x})$. Then, $A S=S B, B=S^{-1} A S$, and $A=S B S^{-1}$, where

$$
S=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Definition 3.4.5 Similar matrices

Consider two $\mathrm{n} \times \mathrm{n}$ matrices A and B . We say that A is similar to B if there is an invertible matrix S such that

$$
\mathrm{AS}=\mathrm{SB}, \text { or } \mathrm{B}=S^{-1} \mathrm{AS}
$$

EXAMPLE 6
Is matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ similar to $B=\left[\begin{array}{rr}5 & 0 \\ 0 & -1\end{array}\right]$?
Solution
We are looking for a matrix $\mathrm{S}=\left[\begin{array}{cc}x & y \\ z & t\end{array}\right]$ such that $A S=S B$, or

$$
\left[\begin{array}{rr}
x+2 z & y+2 t \\
4 x+3 z & 4 y+3 t
\end{array}\right]=\left[\begin{array}{cc}
5 x & -y \\
5 z & -t
\end{array}\right] .
$$

These equations simplify to

$$
z=2 x, t=-y,
$$

so that any invertible matrix of the form

$$
S=\left[\begin{array}{rr}
x & y \\
2 x & -y
\end{array}\right]
$$

does the job. Note that $\operatorname{det}(\mathrm{S})=-3 x y$. Matrix S is invertible if $\operatorname{det}(S) \neq 0$ (i.e., if neither x nor y is zero).

EXAMPLE 7
Show that if matrix A is similar to B, then its power A^{t} is similar to B^{t} for all positive integers t. (That is, A^{2} is similar to B^{2}, A^{3} is similar to B^{3}, etc.)

Solution

We know that $\mathrm{B}=S^{-1} \mathrm{AS}$ for some invertible matrix S. Now, B^{t}
$=\frac{\left(S^{-1} A S\right)\left(S^{-1} A S\right) \ldots\left(S^{-1} A S\right)\left(S^{-1} A S\right)}{t-\text { times }}$
$=S^{-1} A^{t} S$,
proving our claims. Note the cancellation of many terms of the form $S S^{-1}$.

Fact 3.4.6
Similarity is an equivalence relation

1. An $n \times n$ matrix A is similar to itself (Reflexivity).
2. If A is similar to B, then B is similar to A (Symmetry).
3. If A is similar to B and B is similar to C, then A is similar to C (Transitivity).

Proof

A is similar to B : $B=P^{-1} A P$
B is similar to $C: C=Q^{-1} B Q$, then
$C=Q^{-1} B Q=Q^{-1} P^{-1} A P Q=(P Q)^{-1} A(P Q)$ that is, A is similar to C by matrix $P Q$.

Homework Exercise 3.4: 5, 6, 9, 10, 13, 14, 19, 31, 39

