Applied Linear Algebra OTTO BRETSCHER

http://www.prenhall.com/bretscher

Chapter 2
 Linear Transformation

Chia-Hui Chang

Email: chia@csie.ncu.edu.tw
National Central University, Taiwan

September 27, 2004

2.1 Introduction to Linear Transformations and Their Inverse

See Figure 1
Encryption of a coordinate $\vec{x}=\left[\begin{array}{r}5 \\ 42\end{array}\right]$ to \vec{y} by the following code:

$$
\begin{aligned}
& y_{1}=x_{1}+3 x_{2}=131 \\
& y_{2}=2 x_{1}+5 x_{2}=220
\end{aligned}
$$

At the headquarter, $\vec{y}=\left[\begin{array}{l}131 \\ 220\end{array}\right]$ is received. We need to determine the actual \vec{x} by solve the linear system.

$$
\begin{gathered}
A \vec{x}=\vec{b} \\
x_{1}+3 x_{2}=131 \\
2 x_{1}+5 x_{2}=220
\end{gathered}
$$

i.e.

If $\vec{y}=\left[\begin{array}{l}133 \\ 223\end{array}\right]$ We need to solve it again by:

$$
\begin{array}{r}
x_{1}+3 x_{2}=133 \\
2 x_{1}+5 x_{2}=223
\end{array}
$$

For a general formula, we need solve the system

$$
\begin{array}{r}
x_{1}+3 x_{2}=y_{1} \\
2 x_{1}+5 x_{2}=y_{2}
\end{array}
$$

for arbitrary constants y_{1} and y_{2}.

For sender: $\vec{x} \rightarrow \vec{y}$ (encoding)

For receiver: $\vec{y} \rightarrow \vec{x}$ (decoding)

The decoding formula is:

$$
\begin{aligned}
& x_{1}=-5 y_{1}+3 y_{2} \\
& x_{2}=2 y_{1}-y_{2}
\end{aligned}
$$

$$
\text { or } \vec{x}=B \vec{y}, \text { where } B=\left[\begin{array}{cc}
-5 & 3 \\
2 & -1
\end{array}\right]
$$

Definition. We say that the matrix B is the inverse of the matrix A and write $B=A^{-1}$.

$$
\begin{aligned}
& \left|\begin{array}{rl}
x_{1}+3 x_{2}=y_{1} & \\
2 x_{1}+5 x_{2}= & y_{2}
\end{array}\right|-2(I) \\
& \left|\begin{array}{rl}
x_{1}+3 x_{2} & =y_{1} \\
-x_{2} & =-2 y_{1}+y_{2}
\end{array}\right| \div(-1) \\
& \left\lvert\, \begin{array}{rl|r}
x_{1}+3 x_{2} & =y_{1} & -3(I I) \\
x_{2} & =2 y_{1}-y_{2} & \longrightarrow
\end{array}\right. \\
& \left|\begin{array}{rrr}
x_{1} & & =-5 y_{1} \\
& +3 y_{2} \\
& x_{2} & = \\
& 2 y_{1} & -y_{2}
\end{array}\right|
\end{aligned}
$$

$$
\vec{x} \underset{\vec{x}=B \vec{y}, B=\left[\begin{array}{rr}
-5 & 3 \\
2 & -1
\end{array}\right]}{\stackrel{\rightharpoonup}{y}=A \vec{x}, A=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]} \vec{y}
$$

The coding transformation is represented as

$$
\underbrace{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]}_{\vec{y}}=\left[\begin{array}{rr}
x_{1}+ & 3 x_{2} \\
2 x_{1}+5 x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{\vec{x}}
$$

or succinctly, as $\vec{y}=A \vec{x}$.

A transformation of the form $\vec{y}=A \vec{x}$ is called a linear transformation.

Function: Consider two sets X and Y. A function $T: X \rightarrow Y$ is a rule that associates with each element $x \in X$ a unique element $y \in Y$.

The set X is called the domain and Y is called its codomain.

Definition. A function T from R^{n} to R^{m} is called a linear transformation if there is an $m \times n$ matrix A such that
$T(\vec{x})=A \vec{x}$, for all \vec{x} in R^{n}.

Example. The linear transformation system

$$
\begin{array}{ll}
y_{1}=7 x_{1}+3 x_{2}-9 x_{3} & +8 x_{4} \\
y_{2}=6 x_{1}+2 x_{2}-8 x_{3} & +7 x_{4} \\
y_{3}=8 x_{1}+4 x_{2} & +7 x_{4}
\end{array}
$$

(a function from R^{4} to R^{3}) can be represented by the 3×4 matrix

$$
A=\left[\begin{array}{rrrr}
7 & 3 & -9 & 8 \\
6 & 2 & -8 & 7 \\
8 & 4 & 0 & 7
\end{array}\right]
$$

Example. The identity transformation system

$$
\begin{aligned}
& y_{1}=x_{1} \\
& y_{2}=x_{2} \\
& \vdots \\
& y_{n}=x_{n}
\end{aligned}
$$

(a linear transformation from R^{n} to R^{n} whose output equals its input) is represented by $n \times n$ matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

This matrix is called the identiy matrix and is denoted by I_{n} :

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \text { etc. }
$$

Example. Give a geometric interpretation of the linear transformation

$$
\begin{gathered}
\vec{y}=A \vec{x}, \text { where } A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-x_{2} \\
x_{1}
\end{array}\right] .}
\end{gathered}
$$

See Figure 4 (pp.45).

Fact 2.1.2 Consider a linear transformation T from R^{n} to R^{m}. Let $\vec{e}_{i}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] \leftarrow i t h$

The matrix of T can be represented as
$A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \cdots & T\left(\vec{e}_{n}\right) \\ \mid & \mid & & \mid\end{array}\right]$
Since
$T\left(\vec{e}_{i}\right)=A \vec{e}_{i}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n} \\ \mid & \mid & & \mid\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right]=\vec{v}_{i}$

Example. Find the inverse for the following matrix:
$\left[\begin{array}{ll}1 & 2 \\ 3 & 9\end{array}\right]$
Solution

$$
\left.\begin{array}{l}
{\left[\begin{array}{llll}
1 & 2 & : & y_{1} \\
3 & 9 & : & y_{2}
\end{array}\right]-3(I)} \\
\longrightarrow\left[\begin{array}{llll}
1 & 2 & : & y_{1} \\
0 & 3 & : & -3 y_{1}+y_{2}
\end{array}\right] \div 3 \\
\longrightarrow\left[\begin{array}{ll:l}
1 & 2 & : \\
0 & 1 & : \\
1
\end{array}\right. \\
\longrightarrow y_{1}+\frac{1}{3} y_{2}
\end{array}\right]-2(I I),\left[\begin{array}{ll:l}
1 & 0 & : \\
0 & 1 & : \\
\hline
\end{array}-y_{1}-\frac{2}{3} y_{2}+\frac{1}{3} y_{2}\right] \text {. }
$$

Example. Find the inverse for the following matrix: $\left[\begin{array}{rr}3 & -\frac{2}{3} \\ -1 & \frac{1}{3}\end{array}\right]$

Solution

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & -\frac{2}{3} & : & y_{1} \\
-1 & \frac{1}{3} & : & y_{2}
\end{array}\right] \div 3} \\
& \longrightarrow\left[\begin{array}{ccccc}
1 & -\frac{2}{9} & : & \frac{1}{3} y_{1} & \\
-1 & \frac{1}{3} & : & & y_{2}
\end{array}\right]+(I) \\
& \longrightarrow\left[\begin{array}{cc:c}
1 & -\frac{2}{9} & : \\
0 & \frac{1}{3} y_{1} \\
0 & : & \frac{1}{3} y_{1}+y_{2}
\end{array}\right] \times 9 \\
& \longrightarrow\left[\begin{array}{ccc:c}
1 & -\frac{2}{9} & \vdots & \frac{1}{3} y_{1} \\
0 & 1 & : & 3 y_{1}+9 y_{2}
\end{array}\right]+\frac{2}{9}(I I) \\
& \longrightarrow\left[\begin{array}{cccc}
1 & 0 & \vdots & y_{1}+2 y_{2} \\
0 & 1 & : & 3 y_{1}+9 y_{2}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
3 & -\frac{2}{3} \\
-1 & \frac{1}{3}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 2 \\
3 & 9
\end{array}\right]
\end{aligned}
$$

Example. Not all linear transformations are invertible. Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$

If $\vec{y}=\left[\begin{array}{r}89 \\ 178\end{array}\right]$, to solve the system

$$
\begin{array}{rr}
x_{1}+2 x_{2}= & 89 \\
2 x_{1}+4 x_{2}= & 178
\end{array}
$$

We discover there are infinitely many solutions

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
89-2 t \\
t
\end{array}\right]
$$

We say that the coding matrix A are noninvertible.

Homework. Exercises 2.1: 4, 5, 7, 10, 12, 15

2.2 Linear Transformation in Geometry

Example. 1 Consider a linear transformation system $T(\vec{x})=A \vec{x}$ from R^{n} to R^{m}.
a. $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$

In words, the transformation of the sum of two vectors equals the sum of the transformation.
b. $T(k \vec{v})=k T(\vec{v})$

In words, the transformation of a scalar multiple of a vector is the scalar multiple of the transform.

See Figure 1 (pp.50).

Fact A transformation T from R^{n} to R^{m} is linear iff
a. $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$, for all \vec{v}, \vec{w} in R^{n}, and
b. $T(k \vec{v})=k T(\vec{v})$, for all \vec{v} in R^{n} and all scalars k.

Proof

Idea: To prove the inverse, we must show a matrix A such that $T(\vec{x})=A \vec{x}$. Consider a transformation T from R^{n} to R^{m} that satisfy (a) and (b), find A.

Example. 2 Consider a linear transformation T from R^{2} to R^{2}. The vectors $T \vec{e}_{1}$ and $T \vec{e}_{2}$ are sketched in Figure 2. Sketch the image of the unit square under this transformation.

See Figure 2. (pp. 51)
Example. 3 Consider a linear transformation T from R^{2} to R^{2} such that $T\left(\vec{v}_{1}\right)=\frac{1}{2} \vec{v}_{1}$ and $T\left(\vec{v}_{2}\right)=2 \vec{v}_{2}$, for the vectors \vec{v}_{1} and \vec{v}_{2} in Figure 5. On the same axes, sketch $T(\vec{x})$, for the given vector \vec{x}.

See Figure 5. (pp. 52)

[Rotation]

Example. 4 Let T be the counterclockwise rotation through an angle α.
a. Draw sketches to illustrate that T is a linear transformation.
b. Find the matrix of T.

Example. 5 Give a geometric interpretation of the linear transformation.

$$
T(\vec{x})=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \vec{x}
$$

Rotation-dilations A matrix with this form

$$
\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

denotes a counterclockwise rotation through the anle α followed by a dilation by the factor r where $\tan (\alpha)=\frac{b}{a}$ and $r=\sqrt{a^{2}+b^{2}}$. Geometrically,

[Shears]

Example. 6 Consider the linear transformation

$$
T(\vec{x})=\left[\begin{array}{ll}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right] \vec{x}
$$

To understand this transformation, sketch the image of the unit square.

Solution The transformation $T(\vec{x})=\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 1\end{array}\right] \vec{x}$ is called a shear parallel to the x_{1}-axis.

Definition. Shear Let L be a line in R^{2}. A linear transformation T from R^{2} to R^{2} is called a shear parallel to L if
a. $T(\vec{v})=\vec{v}$, for all vectors \vec{v} on L, and
b. $T(\vec{v})-\vec{v}$ is parallel to L for all vectors $\vec{x} \in R^{2}$.

Example. 7 Consider two perpendicular vectors \vec{u} and \vec{w} in R^{2}. Show that the transformation
$T(\vec{x})=\vec{x}+(\vec{u} \cdot \vec{x}) \vec{w}$
is a shear parallel to the line L spanned by \vec{w}.

Consider a line L in R^{2}. For any vector \vec{v} in R^{2}, there is a unique vector \vec{w} on L such that $\vec{v}-\vec{w}$ is perpendicular to L.

How can we generalize the idea of an orthogonal projection to lines in R^{n} ?

Definition. orthogonal projection Let L be a line in R^{n} consisting of all scalar multiples of some unit vector \vec{u}. For any vector \vec{v} in R^{n} there is a unique vector \vec{w} on L such that $\vec{v}-\vec{w}$ is perpendicular to L, namely, $\vec{w}=(\vec{u} \cdot \vec{v}) \vec{u}$. This vector \vec{w} is called the orthogonal projection of \vec{v} onto L :
$\operatorname{proj}_{L}(\vec{v})=(\vec{u} \cdot \vec{v}) \vec{u}$

The transformation proj_{L} from R^{n} to R^{n} is linear.

Definition. Let L be a line in R^{n}, the vector $2\left(\operatorname{proj}_{L} \vec{v}\right)-\vec{v}$ is called the reflection of \vec{v} in L :

$$
r e f_{L}(\vec{v})=2\left(\operatorname{proj}_{L} \vec{v}\right)-\vec{v}=2(\vec{u} \cdot \vec{v}) \vec{u}-\vec{v}
$$

where \vec{u} is a unit vector on L.

Homework. Exercise 2.2: 1, 9, 13, 17, 27

2.3 The Inverse Of a Linear Transformation

Definition. A function T from X to Y is called invertible if the equation $T(x)=y$ has a unique solution x in X for each y in Y.

Denote the inverse of T as T^{-1} from Y to X, and write

$$
T^{-1}(y)=(\text { the unique } x \text { in } X \text { such that } T(x)=y)
$$

Note
$T^{-1}(T(x))=x$, for all x in X, and
$T\left(T^{-1}(y)\right)=y$, for all y in Y.
If a function T is invertible, then so is T^{-1},

$$
\left(T^{-1}\right)^{-1}=T
$$

Consider the case of a linear transformation from R^{n} to R^{m} given by $\vec{y}=A \vec{x}$ where A is an $m \times n$ matrix, the transformation is invertible if the linear system $A \vec{x}=\vec{y}$ has a unique solution.

1. Case 1: $m<n$ The system $A \vec{x}=\vec{y}$ has either no solutions or infinitely many solutions, for any \vec{y} in R^{m}. Therefore $\vec{y}=A \vec{x}$ is noninvertible.
2. Case 2: $m=n$ The system $A \vec{x}=\vec{y}$ has a unique solution iff $\operatorname{rref}(A)=I_{n}$, or equivalently, if $\operatorname{rank}(A)=n$.
3. Case 3: $m>n$ The transformation $\vec{y}=$ $A \vec{x}$ is noninvertible, because we can find a vector \vec{y} in R^{m} such that the system $A \vec{x}=\vec{y}$ is inconsistent.

Definition. Invertible Matrix A matrix A is called invertible if the linear transformation $\vec{y}=$ $A \vec{x}$ is invertible. The matrix of inverse transformation is denoted by A^{-1}. If the transformation $\vec{y}=A \vec{x}$ is invertible. its inverse is $\vec{x}=A^{-1} \vec{y}$.

Fact

An $m \times n$ matrix A is invertible if and only if

1. A is a square matrix (i.e., $m=n$), and
2. $\operatorname{rref}(A)=I_{n}$.

Example. Is the matrix A invertible?

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Solution

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \underset{-7(I)}{-4(I)}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right] \underset{(-3)}{\longrightarrow}} \\
{\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -6 & -12
\end{array}\right] \underset{+6(I I)}{-2(I I)}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

A fails to be invertible, since $\operatorname{rref}(A) \neq I_{3}$.

Fact Let A be an $n \times n$ matrix.

1. Consider a vector \vec{b} in R^{n}. If A is invertible, then the system $A \vec{x}=\vec{b}$ has the unique solution $\vec{x}=A^{-1} \vec{b}$. If A is noninvertible, then the system $A \vec{x}=\vec{b}$ has infinitely many solutions or none.
2. Consider the special case when $\vec{b}=\overrightarrow{0}$. The system $A \vec{x}=\overrightarrow{0}$. has $\vec{x}=\overrightarrow{0}$ as a solution. If A is invertible, then this is the only solution. If A is noninvertible, then there are infinitely many other solutions.

If a matrix A is invertible, how can we find the inverse matrix A^{-1} ?

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
3 & 8 & 2
\end{array}\right]
$$

or, equivalently, the linear transformation

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{r}
\left.x_{1}+x_{2}+\begin{array}{r}
x_{3} \\
2 x_{1}
\end{array}\right] 3 x_{2}+2 x_{3} \\
3 x_{1}+8 x_{2}+2 x_{3}
\end{array}\right] .
$$

To find the inverse transformation, we solve this system for input variables x_{1}, x_{2}, x_{3} :

$|$| $x_{1}+x_{2}+x_{3}$ | $=$ | y_{1} | | | $\vec{\longrightarrow}$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| $2 x_{1}+3 x_{2}+2 x_{3}$ | $=$ | | y_{2} | | $-2(I)$ |
| $3 x_{1}+8 x_{2}+2 x_{3}$ | $=$ | | | y_{3} | $-3(I)$ |

$\left|\begin{array}{rl}x_{1}+x_{2}+x_{3} & =y_{1} \\ x_{2} & \\ 5 x_{2}-3 x_{3} & =-2 y_{1}+y_{2} \\ & +y_{3}\end{array}\right|$
$\left|\begin{array}{rllll}x_{1} & +x_{3} & =3 y_{1} & -y_{2} & \\ & x_{2} & = & \\ & -y_{3} & =7 y_{1} & + & y_{2} \\ & -5 y_{2} & +y_{3}\end{array}\right| \div(-1)$

$\left|\begin{array}{lllll}x_{1} & & & =10 y_{1} & -6 y_{2}\end{array}+y_{3}\right|$.
We have found the inverse transformation; its matrix is

$$
B=A^{-1}=\left[\begin{array}{rrr}
10 & -6 & 1 \\
-2 & 1 & 0 \\
-7 & 5 & -1
\end{array}\right]
$$

We can write the preceding computations in matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & \vdots & 1 & 0 & 0 \\
2 & 3 & 2 & : & 0 & 1 & 0 \\
3 & 8 & 2 & : & 0 & 0 & 1
\end{array}\right] \underset{-2(I)}{-2(I)}} \\
& {\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & \vdots & 1 & 0 & 0 \\
0 & 1 & 0 & \vdots & -2 & 1 & 0 \\
0 & 5 & -1 & \vdots & -3 & 0 & 1
\end{array}\right] \underset{-5(I I)}{-(I I)}} \\
& {\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & \vdots & 3 & -1 & 0 \\
0 & 1 & 0 & \vdots & -2 & 1 & 0 \\
0 & 0 & -1 & \vdots & 7 & -5 & 1
\end{array}\right] \underset{(-1)}{\longrightarrow}} \\
& {\left[\begin{array}{rrrlrrr}
1 & 0 & 1 & \vdots & 3 & -1 & 0 \\
0 & 1 & 0 & \vdots & -2 & 1 & 0 \\
0 & 0 & 1 & : & -7 & 5 & -1
\end{array}\right] \xrightarrow{-(I I I)}} \\
& {\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & : & 10 & -6 & 1 \\
0 & 1 & 0 & \vdots & -2 & 1 & 0 \\
0 & 0 & 1 & : & -7 & 5 & -1
\end{array}\right] .}
\end{aligned}
$$

This process can be described succinctly as follows:

Find the inverse of a matrix

To find the inverse of an $n \times n$ matrix A, from the $n \times(2 n)$ matrix $\left[A: I_{n}\right]$ and compute $\operatorname{rref}\left[\begin{array}{lll}A: & I_{n}\end{array}\right]$.

- If rref $\left[A: I_{n}\right]$ is of the form $\left[I_{n}: B\right]$, then A is invertible, and $A^{-1}=B$.
- If rref $\left[A: I_{n}\right]$ is of another form (i.e., its left half fails to be I_{n}), then A is not invertible. (Note that the left half of rref [$A: I_{n}$] is rref(A).)

The inverse of a 2×2 matrix is particularly easy to find.

Inverse and determinant of a 2×2 matrix

1. The 2×2 matrix $A=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$
is invertible if (and only if) $a d-b c \neq 0$. Quantity $a d-b c$ is called the determinant of A, written $\operatorname{det}(A)$:

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

2. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible, then
$\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{\mathrm{ad}-\mathbf{b c}}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.
Compare this with Exercise 2.1.13.
Homework. Exercise 2.3 21-27, 41

2.4 MATRIX PRODUCTS

The composite of two functions: $y=\sin (x)$ and $z=\cos (y)$ is $z=\cos (\sin (x))$.

Consider two transformation systems:

$$
\begin{aligned}
& \vec{y}=A \vec{x}, \text { with } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right] \\
& \vec{z}=B \vec{y}, \text { with } B=\left[\begin{array}{ll}
6 & 7 \\
8 & 9
\end{array}\right]
\end{aligned}
$$

The composite of the two transformation systems is

$$
\vec{z}=B(A \vec{x})
$$

Question: Is $\vec{z}=T(\vec{x})$ linear? If so, what's the matrix?
(a) Find the matrix for the composite:

$$
\begin{aligned}
& \quad \begin{array}{l}
z_{1}=6 y_{1}+7 y_{2} \quad \text { and } \quad \begin{array}{l}
y_{1}=x_{1}+2 x_{2} \\
y_{2}=3 x_{1}+5 x_{2}
\end{array} \\
z_{2}=8 y_{1}+9 y_{2}
\end{array} \\
& z_{1}=6\left(x_{1}+2 x_{2}\right)+7\left(3 x_{1}+5 x_{2}\right) \\
& =(6 \cdot 1+7 \cdot 3) x_{1}+(6 \cdot 2+7 \cdot 5) x_{2} \\
& =27 x_{1}+47 x_{2} \\
& z_{2}=8\left(x_{1}+2 x_{2}\right)+9\left(3 x_{1}+5 x_{2}\right) \\
& =(8 \cdot 1+9 \cdot 3) x_{1}+(8 \cdot 2+9 \cdot 5) x_{2} \\
& =35 x_{1}+61 x_{2}
\end{aligned}
$$

This shows the composite is linear with matrix $\left[\begin{array}{ll}6 \cdot 1+7 \cdot 3 & 6 \cdot 2+7 \cdot 5 \\ 8 \cdot 1+9 \cdot 3 & 8 \cdot 2+9 \cdot 5\end{array}\right]=\left[\begin{array}{cc}27 & 47 \\ 35 & 61\end{array}\right]$
(b) Use Fact to show the transformation $T(\vec{x})=$ $B(A \vec{x})$ is linear:
$T(\vec{v}+\vec{w})=B(A(\vec{v}+\vec{w}))=B(A \vec{v}+A \vec{w})=B(A \vec{v})+$
$B(A \vec{w})=T(\vec{v})+T(\vec{w})$
$T(k \vec{v})=B(A(k \vec{v}))=B(k(A \vec{v}))=k(B(A \vec{v}))=k T(\vec{v})$

Once we know that T is linear, we can find its matrix by computing the vectors: $T\left(\vec{e}_{1}\right)$ and $T\left(\vec{e}_{2}\right)$:
$T\left(\vec{e}_{1}\right)=B\left(A\left(\vec{e}_{1}\right)\right)=B($ first column of $A)=$ $\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}27 \\ 35\end{array}\right]$
$T\left(\vec{e}_{2}\right)=B\left(A\left(\vec{e}_{1}\right)\right)=B($ second column of $A)=$ $\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}47 \\ 61\end{array}\right]$

The matrix of $T(\vec{x})=B(A \vec{x})=B A(\vec{x})$:
$=\left[\begin{array}{cc}\mid & \mid \\ T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) \\ \mid & \mid\end{array}\right]=\left[\begin{array}{ll}27 & 47 \\ 35 & 61\end{array}\right]$

Definition. Matrix multiplication

1. Let B be an $m \times n$ matrix and A a $q \times p$ matrix. The product $B A$ is defined if (and only if) $n=q$.
2. If B is an $m \times n$ matrix and A an $n \times p$ matrix, then the product $B A$ is defined as the matrix of the linear transformation $T(\vec{x})=$ $B(A \vec{x})$. This means that $T(\vec{x})=B(A \vec{x})=$ $(B A) \vec{x}$, for all \vec{x} in R^{p}. The product $B A$ is an $m \times p$ matrix.

Let B be an $m \times n$ matrix and A an $n \times p$ matrix. Let's think about the columns of the matrix $B A$:
(i th columns of $B A$)
$=(B A) \vec{e}_{i}$
$=B\left(A \vec{e}_{i}\right)$
$=B(i$ th column of $A)$.

If we denote the columns of A by $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$, we can write

$$
B A=B \underbrace{\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{p} \\
\mid & \mid & & \mid
\end{array}\right]}_{A}=
$$

The matrix product, column by column

Let B be an $m \times n$ matrix and A an $n \times p$ matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$. Then, the product $B A$ is

$$
B A=B\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
B \vec{v}_{1} & B \vec{v}_{2} & \ldots & B \vec{v}_{p} \\
\mid & \mid & & \mid
\end{array}\right] .
$$

To find $B A$, we can multiply B with the columns of A and combine the resulting vectors.

Fact Matrix multiplication is noncommutative: $A B \neq B A$, in general. However, at times it does happen that $A B=B A$; then, we say that the matrices A and B commute.

The matrix product, entry by entry

Let B be an $m \times n$ matrix and A an $n \times p$ matrix. The $i j$ th entry of $B A$ is the dot product of the i th row of B and the j th column of A.

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{i 1} & b_{i 2} & \ldots & b_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \ldots & b_{m n}
\end{array}\right]\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots & a_{1 p} \\
a_{21} & a_{22} & \ldots & a_{2 j} & \ldots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n j} & \ldots & a_{n p}
\end{array}\right]
$$

is the $m \times p$ matrix whose $i j$ th entry is
$b_{i 1} a_{1 j}+b_{i 2} a_{2 j}+\ldots+b_{i n} a_{n j}=\sum_{k=1}^{n} b_{i k} a_{k j}$.
Example. $\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]=$
$\left[\begin{array}{ll}6 \cdot 1+7 \cdot 3 & 6 \cdot 2+7 \cdot 5 \\ 8 \cdot 1+9 \cdot 3 & 8 \cdot 2+9 \cdot 5\end{array}\right]=\left[\begin{array}{ll}27 & 47 \\ 35 & 61\end{array}\right]$.
We have done these computations before. (where?)

Matrix Algebra

Fact For an invertible $n \times n$ matrix A.

$$
A A^{-1}=I_{n} \text { and } A^{-1} A=I_{n}
$$

Fact For an $m \times n$ matrix A.

$$
A I_{n}=I_{m} A=A
$$

Fact Matrix multiplication is associative

$$
(A B) C=A(B C)
$$

We can write simply $A B C$ for the product $(A B) C=$ $A(B C)$.

Proof (a) $(A B) C=(A B)\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{q}\end{array}\right]$

$$
=\left[\begin{array}{llll}
(A B) \vec{v}_{1} & (A B) \vec{v}_{2} & \cdots & (A B) \vec{v}_{q}
\end{array}\right]
$$

and

$$
\begin{aligned}
& A(B C)=A\left[\begin{array}{llll}
B \vec{v}_{1} & B \vec{v}_{2} & \cdots & B \vec{v}_{q}
\end{array}\right] \\
& \quad=\left[\begin{array}{llll}
A\left(B \vec{v}_{1}\right) & A\left(B \vec{v}_{2}\right) & \cdots & A\left(B \vec{v}_{q}\right)
\end{array}\right]
\end{aligned}
$$

Since $(A B) \vec{v}_{i}=A\left(B \vec{v}_{i}\right)$, by definition of the matrix product, we find that $(A B) C=A(B C)$.

Proof (b) Consider two linear transformations

$$
T(\vec{x})=((A B) C) \vec{x}
$$

and

$$
L(\vec{x})=(A(B C)) \vec{x}
$$

are identical because,

$$
T(\vec{x})=((A B) C) \vec{x}=(A B)(C \vec{x})=A(B(C \vec{x}))
$$

and

$$
L(\vec{x})=(A(B C)) \vec{x}=A((B C) \vec{x})=A(B(C \vec{x}))
$$

If A and B are invertible $n \times n$ matrices, is $B A$ invertible?

$$
\vec{y}=B A \vec{x}
$$

multiply both sides by B^{-1}

$$
B^{-1} \vec{y}=B^{-1} B A \vec{x}=I_{n} A \vec{x}=A \vec{x}
$$

next, multiply both sides by A^{-1}

$$
A^{-1} B^{-1} \vec{y}=A^{-1} A \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This computation shows that the linear transformation is invertible since

$$
\vec{x}=A^{-1} B^{-1} \vec{y}
$$

Fact The inverse of a product of matrices
If A and B are invertible $n \times n$ matrices, then $B A$ is invertible as well, and

$$
(B A)^{-1}=A^{-1} B^{-1}
$$

Pay attention to the order of the matrices.
Proof Verify it by yourself.

Fact Let A and B be two $n \times n$ matrices such that

$$
B A=I_{n} .
$$

Then,
a. A and B are both invertible.
b. $A^{-1}=B$ and $B^{-1}=A$, and
c. $A B=I_{n}$.

Proof (a) To demonstrate A is invertible it suffices to show that the linear system $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$.

$$
B A \vec{x}=B \overrightarrow{0}=\overrightarrow{0}
$$

(b) $B=A^{-1}$ since

$$
(B A) A^{-1}=\left(I_{n}\right) A^{-1}=A^{-1}
$$

and

$$
B^{-1}=\left(A^{-1}\right)^{-1}=A
$$

(c) $A B=A A^{-1}=I_{n}$

Example. $B=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ is the inverse of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
it suffices to verify that $B A=I_{2}$:
$\mathrm{BA}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$=\frac{1}{a d-b c}\left[\begin{array}{ll}a d-b c & b d-b d \\ a c-a c & a d-b c\end{array}\right]=I_{2}$.
Example.
Suppose A, B and C are three $n \times n$ matrices and $A B C=I_{n}$. Show that B is invertible, and express B^{-1} in term of A and C.

Solution

Write $A B C=(A B) C=I_{n}$. We have $C(A B)=$ I_{n}. Since matrix multiplication is associative, we can write $(C A) B=I_{n}$. We conclude that B is invertible, and $B^{-1}=C A$.

Distributive property for matrices

Fact If A, B are $n \times n$, and C, D are $n \times p$ matrices, then

$$
\begin{gathered}
A(C+D)=A C+A D \\
\text { and } \\
(A+B) C=A C+B C .
\end{gathered}
$$

Fact If A is an $m \times n$ matrix, B an $n \times p$ matrix, and k a scalar, then

$$
(k A) B=A(k B)=k(A B) .
$$

Partitioned Matrices

It is sometimes useful to break a large matrix down into smaller submatrices by slicing it up with horizontal or vertical lines that go all the way through the matrix.

For example, we can think of the 4×4 matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 8 & 7 & 6 \\
5 & 4 & 3 & 2
\end{array}\right]
$$

as a 2×2 matrix whose "entries" are four 2×2 matrices:

$$
A=\left[\begin{array}{ll|ll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
\hline 9 & 8 & 7 & 6 \\
5 & 4 & 3 & 2
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

with $A_{11}=\left[\begin{array}{ll}1 & 2 \\ 5 & 7\end{array}\right], A_{12}=\left[\begin{array}{ll}3 & 4 \\ 7 & 8\end{array}\right]$, etc.
The submatrices in such a partition need not be of equal size; for example, we could have
$B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]=\left[\begin{array}{ll|l}1 & 2 & 3 \\ 4 & 5 & 6 \\ \hline 7 & 8 & 9\end{array}\right]=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$.
A useful property of partitioned matrices is the following:

Multiplying partitioned matrices Partitioned matrices can be multiplied as though the submatrices were scalars:
$A B=$
$\left[\begin{array}{cccc}A_{11} & A_{12} & \ldots & A_{1 n} \\ A_{21} & A_{22} & \ldots & A_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{i 1} & A_{i 2} & \ldots & A_{i n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m 1} & A_{m 2} & \ldots & A_{m n}\end{array}\right]\left[\begin{array}{cccccc}B_{11} & B_{12} & \ldots & B_{1 j} & \ldots & B_{1 p} \\ B_{21} & B_{22} & \ldots & B_{2 j} & \ldots & B_{2 p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ B_{n 1} & B_{n 2} & \ldots & B_{n j} & \ldots & B_{n p}\end{array}\right]$
is the partitioned matrix whose ijth "entry" is the matrix

$$
A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\ldots+A_{i n} B_{n j}=\sum_{k=1}^{n} A_{i k} B_{k j},
$$

provided that all the products $A_{i k} B_{k j}$ are defined.

Example.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
& =\left[\left.\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\left[\begin{array}{ll}
7 & 8
\end{array}\right] \right\rvert\,\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
6
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1
\end{array}\right][9]\right.
\end{aligned}=\left[\begin{array}{cc|c}
-3 & -3 & -3 \\
8 & 10 & 12
\end{array}\right] .
$$

Compute this product without using a partition, and see whether you find the same result.

Example.

$A=\left[\begin{array}{rr}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$,
where A_{11} is an $n \times n$ matrix, A_{22} is an $m \times m$ matrix, and A_{12} is an $n \times m$ matrix.
a. For which choices of A_{11}, A_{12}, and A_{22} is A invertible ?
b. If A is invertible, what is A^{-1} (in terms of A_{11}, A_{12}, A_{22})?

Solution

We are looking for an $(n+m) \times(n+m)$ matrix B such that

$$
B A=I_{n+m}=\left[\begin{array}{rr}
I_{n} & 0 \\
0 & I_{m}
\end{array}\right] .
$$

Let us partition B in the same way as A :

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right],
$$

where B_{11} is $n \times n, B_{22}$ is $m \times m$, etc. The fact that B is the inverse of A means that

$$
\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{rr}
A_{11} & A_{12} \\
0 & B_{22}
\end{array}\right]=\left[\begin{array}{rr}
I_{n} & 0 \\
0 & I_{m}
\end{array}\right],
$$

or using

$$
\left|\begin{array}{rlr}
B_{11} A_{11} & = & I_{n} \\
B_{11} A_{12}+B_{12} A_{22} & = & 0 \\
B_{21} A_{11} & = & 0 \\
B_{21} A_{12}+B_{22} A_{22} & = & I_{m}
\end{array}\right|
$$

We have to solve this system for the submatrices $B_{i j}$.

1. By Equation 1, A_{11} must be invertible, and $B_{11}=A_{11}^{-1}$.
2. By Equation 3, $B_{21}=0$ (Multiply by A_{11}^{-1} form the right)
3. Equation 4 now simplifies to $B_{22} A_{22}=$ I_{m}. Therefore, A_{22} must be invertible, and $B_{22}=A_{22}^{-1}$.
4. Lastly, Solve for B_{12} by Equation 2

$$
A_{11}^{-1} A_{12}+B_{12} A_{22}=0
$$

$$
\begin{aligned}
& \Rightarrow B_{12} A_{22}=-A_{11}^{-1} A_{12} \\
& \Rightarrow B_{12}=-A_{11}^{-1} A_{12} A_{22}^{-1}
\end{aligned}
$$

So
a. A is invertible if (and only if) both A_{11} and A_{22} are invertible (no condition is imposed on A_{12}).
b. If A is invertible, then its inverse is

$$
A^{-1}=\left[\begin{array}{cc}
A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\
0 & A_{22}^{-1}
\end{array}\right] .
$$

Verify this result for the following example:

Example. 5

$$
\left[\begin{array}{ll|lll}
1 & 1 & 1 & 2 & 3 \\
1 & 2 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc|ccc}
2 & -1 & 2 & 1 & 0 \\
-1 & 1 & -3 & -3 & -3 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Homework.

Exercise 2.4: 5, 13, 17, 23, 27, 35

