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2.1 Introduction to Linear Transformations

and Their Inverse

See Figure 1

Encryption of a coordinate ~x =

[
5

42

]
to ~y by

the following code:

y1 = x1+ 3x2 = 131
y2 = 2x1+ 5x2 = 220

At the headquarter, ~y =

[
131
220

]
is received.

We need to determine the actual ~x by solve

the linear system.

A~x = ~b

i.e.
x1+ 3x2 = 131

2x1+ 5x2 = 220
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If ~y =

[
133
223

]
We need to solve it again by:

x1+ 3x2 = 133
2x1+ 5x2 = 223

For a general formula, we need solve the sys-

tem

x1+ 3x2 = y1
2x1+ 5x2 = y2

for arbitrary constants y1 and y2.

For sender: ~x → ~y (encoding)

For receiver: ~y → ~x (decoding)
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∣∣∣∣∣
x1+ 3x2 = y1

2x1+ 5x2 = y2

∣∣∣∣∣
−→

−2(I)

∣∣∣∣∣
x1 + 3x2 = y1

−x2 = −2y1 + y2

∣∣∣∣∣
−→

÷(−1)

∣∣∣∣∣
x1 + 3x2 = y1

x2 = 2y1 − y2

∣∣∣∣∣
−3(II)

−→
∣∣∣∣∣

x1 = −5y1 +3y2
x2 = 2y1 −y2

∣∣∣∣∣

The decoding formula is:

x1 = −5y1 +3y2
x2 = 2y1 −y2

or ~x = B~y, where B =

[
−5 3
2 −1

]

Definition. We say that the matrix B is the

inverse of the matrix A and write B = A−1.
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~x

~y = A~x, A =

[
1 3
2 5

]

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
~x = B~y, B =

[
−5 3
2 −1

] ~y

The coding transformation is represented as

[
y1
y2

]

︸ ︷︷ ︸
=

[
x1+ 3x2

2x1+ 5x2

]
=

[
1 3
2 5

]

︸ ︷︷ ︸

[
x1
x2

]

︸ ︷︷ ︸
~y A ~x

or succinctly, as ~y = A~x .

A transformation of the form ~y = A~x is called

a linear transformation.

Function: Consider two sets X and Y . A func-

tion T : X → Y is a rule that associates with

each element x ∈ X a unique element y ∈ Y .

The set X is called the domain and Y is called

its codomain.
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Definition. A function T from Rn to Rm is

called a linear transformation if there is an

m× n matrix A such that

T (~x) = A~x, for all ~x in Rn.

Example. The linear transformation system

y1 = 7x1 + 3x2 − 9x3 +8x4
y2 = 6x1 + 2x2 − 8x3 +7x4
y3 = 8x1 + 4x2 +7x4

(a function from R4 to R3) can be represented

by the 3× 4 matrix

A =




7 3 −9 8
6 2 −8 7
8 4 0 7
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Example. The identity transformation system

y1 = x1
y2 = x2
...
yn = xn

(a linear transformation from Rn to Rn whose

output equals its input) is represented by n×n

matrix

A =




1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1




This matrix is called the identiy matrix and is

denoted by In:

I2 =

[
1 0
0 1

]
, I3 =




1 0 0
0 1 0
0 0 1


 , etc.
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Example. Give a geometric interpretation of

the linear transformation

~y = A~x, where A =

[
0 −1
1 0

]

[
y1
y2

]
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
.

6
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See Figure 4 (pp.45).
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Fact 2.1.2 Consider a linear transformation T

from Rn to Rm. Let ~ei =




0
0
...
1
...
0



← ith

The matrix of T can be represented as

A =




| | |
T (~e1) T (~e2) · · · T (~en)
| | |




Since

T (~ei) = A~ei =



| | |

~v1 ~v2 · · · ~vn

| | |







0
0
...
1
...
0




= ~vi
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Example. Find the inverse for the following

matrix:

[
1 2
3 9

]

Solution

[
1 2 ... y1
3 9 ... y2

]

−3(I)

−→
[

1 2 ... y1
0 3 ... −3y1 + y2

]

÷3

−→
[

1 2 ... y1
0 1 ... −y1 + 1

3y2

]
−2(II)

−→
[

1 0 ... 3y1 − 2
3y2

0 1 ... −y1 + 1
3y2

]

⇒
[

1 2
3 9

]−1

=

[
3 −2

3
−1 1

3

]
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Example. Find the inverse for the following

matrix:

[
3 −2

3
−1 1

3

]

Solution
[

3 −2
3

... y1

−1 1
3

... y2

]
÷3

−→
[

1 −2
9

... 1
3y1

−1 1
3

... y2

]

+(I)

−→
[

1 −2
9

... 1
3y1

0 1
9

... 1
3y1 + y2

]

×9

−→
[

1 −2
9

... 1
3y1

0 1 ... 3y1 + 9y2

]
+2

9(II)

−→
[

1 0 ... y1 + 2y2
0 1 ... 3y1 + 9y2

]

⇒
[

3 −2
3

−1 1
3

]−1

=

[
1 2
3 9

]
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Example. Not all linear transformations are

invertible. Consider the matrix A =

[
1 2
2 4

]

If ~y =

[
89

178

]
, to solve the system

∣∣∣∣∣
x1 +2x2 = 89

2x1 +4x2 = 178

∣∣∣∣∣

We discover there are infinitely many solutions

[
x1
x2

]
=

[
89− 2t

t

]

We say that the coding matrix A are nonin-

vertible.

Homework. Exercises 2.1: 4, 5, 7, 10, 12,

15
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2.2 Linear Transformation in Geometry

Example. 1 Consider a linear transformation

system T (~x) = A~x from Rn to Rm.

a. T (~v + ~w) = T (~v) + T (~w)

In words, the transformation of the sum of two

vectors equals the sum of the transformation.

b. T (k~v) = kT (~v)

In words, the transformation of a scalar mul-

tiple of a vector is the scalar multiple of the

transform.

See Figure 1 (pp.50).
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Fact A transformation T from Rn to Rm is

linear iff

a. T (~v + ~w) = T (~v) + T (~w), for all ~v, ~w in Rn,

and

b. T (k~v) = kT (~v), for all ~v in Rn and all scalars

k.

Proof

Idea: To prove the inverse, we must show a

matrix A such that T (~x) = A~x. Consider a

transformation T from Rn to Rm that satisfy

(a) and (b), find A.
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Example. 2 Consider a linear transformation
T from R2 to R2. The vectors T~e1 and T~e2
are sketched in Figure 2. Sketch the image of
the unit square under this transformation.

See Figure 2. (pp. 51)

Example. 3 Consider a linear transformation
T from R2 to R2 such that T (~v1) = 1

2~v1 and
T (~v2) = 2~v2, for the vectors ~v1 and ~v2 in Figure
5. On the same axes, sketch T (~x), for the
given vector ~x.

See Figure 5. (pp. 52)

[Rotation]

Example. 4 Let T be the counterclockwise
rotation through an angle α.

a. Draw sketches to illustrate that T is a linear
transformation.

b. Find the matrix of T .
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Example. 5 Give a geometric interpretation
of the linear transformation.

T (~x) =

[
a −b
b a

]
~x

Rotation-dilations A matrix with this form

[
a −b
b a

]

denotes a counterclockwise rotation through
the anle α followed by a dilation by the factor
r where tan(α) = b

a and r =
√

a2 + b2. Geo-
metrically,

6

-
α

[
a
b

]
=

[
r cosα
r sinα

]















�

-
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[Shears]

Example. 6 Consider the linear transforma-

tion

T (~x) =

[
1 1

2
0 1

]
~x

To understand this transformation, sketch the

image of the unit square.

Solution The transformation T (~x) =

[
1 1

2
0 1

]
~x

is called a shear parallel to the x1-axis.
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Definition. Shear Let L be a line in R2. A

linear transformation T from R2 to R2 is called

a shear parallel to L if

a. T (~v) = ~v, for all vectors ~v on L, and

b. T (~v)−~v is parallel to L for all vectors ~x ∈ R2.

Example. 7 Consider two perpendicular vec-

tors ~u and ~w in R2. Show that the transfor-

mation

T (~x) = ~x + (~u · x̄)~w

is a shear parallel to the line L spanned by ~w.
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Consider a line L in R2. For any vector ~v in
R2, there is a unique vector ~w on L such that
~v − ~w is perpendicular to L.

³³³³³³³³³³³³³³³³³³³³

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

³³³³³³³³³³³³1B
B

B
B

B
BBM

L
~w

~v
~v − ~w

How can we generalize the idea of an
orthogonal projection to lines in Rn?

³³³³³³³³³³³³³³³³³³³³

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

³³³1
³³³³³³³³³³³³1B

B
B

B
B

BBM

L
~w = k~u

~u

~v
~v − ~w
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Definition. orthogonal projection Let L be

a line in Rn consisting of all scalar multiples

of some unit vector ~u. For any vector ~v in Rn

there is a unique vector ~w on L such that ~v− ~w

is perpendicular to L, namely, ~w = (~u·~v)~u. This

vector ~w is called the orthogonal projection

of ~v onto L:

projL(~v) = (~u · ~v)~u

The transformation projL from Rn to Rn is lin-

ear.

19



Definition. Let L be a line in Rn, the vector

2(projL~v)−~v is called the reflection of ~v in L:

refL(~v) = 2(projL~v)− ~v = 2(~u · ~v)~u− ~v

where ~u is a unit vector on L.

³³³³³³³³³³³³³³³³³³³³³³³³³³³³³³L

³³³1

~u
³³³³³³³³³³1

projL~v
³³³³³³³³³³³³³³³³³³³³1

2projL~v

B
B

B
B

B
B

BBM

#
#

#
#

#
#

#
#

#W
~v

#
#

#
#

#
#

#
#

#W

-
refL~v

-

Homework. Exercise 2.2: 1, 9, 13, 17, 27
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2.3 The Inverse Of a Linear Transforma-

tion

Definition. A function T from X to Y is called

invertible if the equation T(x)=y has a unique

solution x in X for each y in Y.

Denote the inverse of T as T−1 from Y to X,

and write

T−1(y)=(the unique x in X such that T (x) = y)

Note

T−1(T (x)) = x, for all x in X, and

T (T−1(y)) = y, for all y in Y .

If a function T is invertible, then so is T−1,

(T−1)−1 = T

21



Consider the case of a linear transformation

from Rn to Rm given by ~y = A~x where A is

an m × n matrix, the transformation is invert-

ible if the linear system A~x = ~y has a unique

solution.

1. Case 1: m < n The system A~x = ~y has

either no solutions or infinitely many solu-

tions, for any ~y in Rm. Therefore ~y = A~x

is noninvertible.

2. Case 2: m = n The system A~x = ~y has a

unique solution iff rref(A) = In, or equiv-

alently, if rank(A) = n.

3. Case 3: m > n The transformation ~y =

A~x is noninvertible, because we can find a

vector ~y in Rm such that the system A~x = ~y

is inconsistent.
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Definition. Invertible Matrix A matrix A is

called invertible if the linear transformation ~y =

A~x is invertible. The matrix of inverse trans-

formation is denoted by A−1. If the trans-

formation ~y = A~x is invertible. its inverse is

~x = A−1~y.

Fact

An m× n matrix A is invertible if and only if

1. A is a square matrix (i.e.,m=n), and

2. rref(A) = In.

23



Example. Is the matrix A invertible?

A =




1 2 3
4 5 6
7 8 9


 .

Solution



1 2 3
4 5 6
7 8 9




−→
−4(I)
−7(I)




1 2 3
0 −3 −6
0 −6 −12




−→
÷(−3)




1 2 3
0 1 2
0 −6 −12




−2(II)
−→

+6(II)




1 0 −1
0 1 2
0 0 0


 .

A fails to be invertible, since rref(A) 6= I3.
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Fact Let A be an n× n matrix.

1. Consider a vector ~b in Rn. If A is invertible,

then the system A~x = ~b has the unique

solution ~x = A−1~b. If A is noninvertible,

then the system A~x = ~b has infinitely many

solutions or none.

2. Consider the special case when ~b = ~0. The

system A~x = ~0. has ~x = ~0 as a solution.

If A is invertible, then this is the only so-

lution. If A is noninvertible, then there are

infinitely many other solutions.
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If a matrix A is invertible, how can we find the

inverse matrix A−1?

Consider the matrix

A =




1 1 1
2 3 2
3 8 2


 .

or, equivalently, the linear transformation



y1

y2

y3


 =




x1 + x2 + x3

2x1 + 3x2 + 2x3

3x1 + 8x2 + 2x3


 .
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To find the inverse transformation, we solve

this system for input variables x1, x2, x3:
∣∣∣∣∣∣

x1 + x2 + x3 = y1

2x1 + 3x2 + 2x3 = y2

3x1 + 8x2 + 2x3 = y3

∣∣∣∣∣∣
−→

−2(I)
−3(I)

∣∣∣∣∣∣
x1 + x2 + x3 = y1

x2 = −2y1 + y2

5x2 − 3x3 = −3y1 + y3

∣∣∣∣∣∣
−(II)
−→

−5(II)

∣∣∣∣∣∣
x1 + x3 = 3y1 − y2

x2 = −2y1 + y2

− x3 = 7y1 − 5y2 + y3

∣∣∣∣∣∣
−→

÷(−1)

∣∣∣∣∣∣
x1 + x3 = 3y1 − y2

x2 = −2y1 + y2

x3 = −7y1 + 5y2 − y3

∣∣∣∣∣∣
−(III)

−→
∣∣∣∣∣∣

x1 = 10y1 − 6y2 + y3

x2 = −2y1 + y2

x3 = −7y1 + 5y2 − y3

∣∣∣∣∣∣
.

We have found the inverse transformation; its matrix is

B = A−1 =




10 −6 1
−2 1 0
−7 5 −1


 .
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We can write the preceding computations in

matrix form:



1 1 1 : 1 0 0
2 3 2 : 0 1 0
3 8 2 : 0 0 1




−→
−2(I)
−3(I)




1 1 1 : 1 0 0
0 1 0 : −2 1 0
0 5 −1 : −3 0 1




−(II)
−→

−5(II)




1 0 1 : 3 −1 0
0 1 0 : −2 1 0
0 0 −1 : 7 −5 1




−→

÷(−1)




1 0 1 : 3 −1 0
0 1 0 : −2 1 0
0 0 1 : −7 5 −1


 −(III)

−→




1 0 0 : 10 −6 1
0 1 0 : −2 1 0
0 0 1 : −7 5 −1


 .

This process can be described succinctly as follows:
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Find the inverse of a matrix

To find the inverse of an n× n matrix A, from

the n × (2n) matrix
[

A ... In

]
and compute

rref
[

A ... In

]
.

• If rref [A...In] is of the form [In
...B], then A

is invertible, and A−1 = B.

• If rref [A...In] is of another form (i.e., its

left half fails to be In), then A is not in-

vertible. (Note that the left half of rref

[A...In] is rref(A).)
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The inverse of a 2×2 matrix is particularly easy
to find.

Inverse and determinant of a 2× 2 matrix

1. The 2× 2 matrix A =

[
a b
c d

]

is invertible if (and only if) ad − bc 6= 0.
Quantity ad− bc is called the determinant
of A, written det(A):

det(A) = det

[
a b
c d

]
= ad− bc.

2. If A =

[
a b
c d

]
is invertible, then

[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
= 1

det(A)

[
d −b
−c a

]
.

Compare this with Exercise 2.1.13.

Homework. Exercise 2.3 21–27, 41
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2.4 MATRIX PRODUCTS

The composite of two functions: y = sin(x)

and z = cos(y) is z = cos(sin(x)).

Consider two transformation systems:

~y = A~x, with A =

[
1 2
3 5

]

~z = B~y, with B =

[
6 7
8 9

]

The composite of the two transformation sys-

tems is

~z = B(A~x)

Question: Is ~z = T (~x) linear? If so, what’s the

matrix?
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(a) Find the matrix for the composite:

z1 = 6y1 + 7y2
z2 = 8y1 + 9y2

and
y1 = x1 + 2x2
y2 = 3x1 + 5x2

z1 = 6(x1 + 2x2) + 7(3x1 + 5x2)

= (6 · 1 + 7 · 3)x1 + (6 · 2 + 7 · 5)x2

= 27x1 + 47x2

z2 = 8(x1 + 2x2) + 9(3x1 + 5x2)

= (8 · 1 + 9 · 3)x1 + (8 · 2 + 9 · 5)x2

= 35x1 + 61x2

This shows the composite is linear with matrix[
6 · 1 + 7 · 3 6 · 2 + 7 · 5
8 · 1 + 9 · 3 8 · 2 + 9 · 5

]
=

[
27 47
35 61

]
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(b)Use Fact to show the transformation T (~x) =

B(A~x) is linear:

T (~v + ~w) = B(A(~v + ~w)) = B(A~v + A~w) = B(A~v) +
B(A~w) = T (~v) + T (~w)

T (k~v) = B(A(k~v)) = B(k(A~v)) = k(B(A~v)) = kT (~v)

Once we know that T is linear, we can find its

matrix by computing the vectors: T (~e1) and

T (~e2):

T (~e1) = B(A(~e1))=B(first column of A) =[
6 7
8 9

] [
1
3

]
=

[
27
35

]

T (~e2) = B(A(~e1))=B(second column of A) =[
6 7
8 9

] [
2
5

]
=

[
47
61

]

The matrix of T (~x) = B(A~x) = BA(~x):

=




| |
T (~e1) T (~e2)
| |


 =

[
27 47
35 61

]
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Definition. Matrix multiplication

1. Let B be an m × n matrix and A a q × p

matrix. The product BA is defined if (and

only if) n = q.

2. If B is an m×n matrix and A an n× p ma-

trix, then the product BA is defined as the

matrix of the linear transformation T (~x) =

B(A~x). This means that T (~x) = B(A~x) =

(BA)~x, for all ~x in Rp. The product BA is

an m× p matrix.
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Let B be an m × n matrix and A an n × p

matrix. Let’s think about the columns of the

matrix BA:

(ith columns of BA)

= (BA)~ei

= B(A~ei)

= B(ith column of A).

If we denote the columns of A by ~v1, ~v2, ..., ~vp,we

can write

BA = B



| | |

~v1 ~v2 . . . ~vp

| | |




︸ ︷︷ ︸
A

=




| | |
B~v1 B~v2 . . . B~vp

| | |


 .
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The matrix product, column by column

Let B be an m×n matrix and A an n×p matrix

with columns ~v1, ~v2, ..., ~vp. Then, the product

BA is

BA = B




| | |
~v1 ~v2 . . . ~vp

| | |


 =




| | |
B~v1 B~v2 . . . B~vp

| | |


 .

To find BA, we can multiply B with the columns

of A and combine the resulting vectors.

Fact Matrix multiplication is noncommuta-

tive: AB 6= BA, in general. However, at times

it does happen that AB = BA ; then, we say

that the matrices A and B commute.

36



The matrix product, entry by entry

Let B be an m×n matrix and A an n×p matrix.

The ijth entry of BA is the dot product of the

ith row of B and the jth column of A.



b11 b12 . . . b1n

b21 b22 . . . b2n
... ... . . . ...

bi1 bi2 . . . bin
... ... . . . ...

bm1 bm2 . . . bmn







a11 a12 . . . a1j . . . a1p

a21 a22 . . . a2j . . . a2p
... ... . . . ... . . . ...

an1 an2 . . . anj . . . anp




is the m× p matrix whose ijth entry is

bi1a1j + bi2a2j + . . . + binanj =
∑n

k=1 bikakj.

Example.

[
6 7
8 9

] [
1 2
3 5

]
=

[
6 · 1 + 7 · 3 6 · 2 + 7 · 5
8 · 1 + 9 · 3 8 · 2 + 9 · 5

]
=

[
27 47
35 61

]
.

We have done these computations before.(where?)
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Matrix Algebra

Fact For an invertible n× n matrix A.

AA−1 = In and A−1A = In.

Fact For an m× n matrix A.

AIn = ImA = A.

Fact Matrix multiplication is associative

(AB)C = A(BC).

We can write simply ABC for the product (AB)C =

A(BC).
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Proof (a) (AB)C = (AB)[ ~v1 ~v2 · · · ~vq ]

= [ (AB)~v1 (AB)~v2 · · · (AB)~vq ]

and

A(BC) = A[ B~v1 B~v2 · · · B~vq ]

= [ A(B~v1) A(B~v2) · · · A(B~vq) ]

Since (AB)~vi = A(B~vi), by definition of the
matrix product, we find that (AB)C = A(BC).

Proof (b) Consider two linear transformations

T (~x) = ((AB)C)~x

and

L(~x) = (A(BC))~x

are identical because,

T (~x) = ((AB)C)~x = (AB)(C~x) = A(B(C~x))

and

L(~x) = (A(BC))~x = A((BC)~x) = A(B(C~x))
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If A and B are invertible n× n matrices, is BA
invertible?

~y = BA~x

multiply both sides by B−1

B−1~y = B−1BA~x = InA~x = A~x

next, multiply both sides by A−1

A−1B−1~y = A−1A~x = In~x = ~x

This computation shows that the linear trans-
formation is invertible since

~x = A−1B−1~y

Fact The inverse of a product of matrices

If A and B are invertible n × n matrices, then
BA is invertible as well, and

(BA)−1 = A−1B−1.

Pay attention to the order of the matrices.

Proof Verify it by yourself.
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Fact Let A and B be two n× n matrices such

that

BA = In.

Then,

a. A and B are both invertible.

b. A−1 = B and B−1 = A, and

c. AB = In.

Proof (a) To demonstrate A is invertible it

suffices to show that the linear system A~x = ~0

has only the solution ~x = ~0.

BA~x = B~0 = ~0

(b) B = A−1 since

(BA)A−1 = (In)A
−1 = A−1

and

B−1 = (A−1)−1 = A

(c) AB = AA−1 = In
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Example. B= 1
ad−bc

[
d −b
−c a

]
is the inverse

of A =

[
a b
c d

]
.

it suffices to verify that BA = I2:

BA= 1
ad−bc

[
d −b
−c a

] [
a b
c d

]

= 1
ad−bc

[
ad− bc bd− bd
ac− ac ad− bc

]
= I2.

Example.

Suppose A, B and C are three n × n matrices
and ABC = In. Show that B is invertible, and
express B−1 in term of A and C.

Solution

Write ABC = (AB)C = In. We have C(AB) =
In. Since matrix multiplication is associative,
we can write (CA)B = In. We conclude that
B is invertible, and B−1 = CA.
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Distributive property for matrices

Fact If A, B are n × n, and C, D are n × p

matrices, then

A(C + D) = AC + AD

and

(A + B)C = AC + BC.

Fact If A is an m×n matrix, B an n×p matrix,

and k a scalar, then

(kA)B = A(kB) = k(AB).
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Partitioned Matrices

It is sometimes useful to break a large matrix

down into smaller submatrices by slicing it up

with horizontal or vertical lines that go all the

way through the matrix.

For example, we can think of the 4× 4 matrix

A =




1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2




as a 2×2 matrix whose ”entries” are four 2×2

matrices:

A =




1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2


 =

[
A11 A12
A21 A22

]
,
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with A11 =

[
1 2
5 7

]
, A12 =

[
3 4
7 8

]
, etc.

The submatrices in such a partition need not

be of equal size; for example, we could have

B =




1 2 3
4 5 6
7 8 9


 =




1 2 3
4 5 6
7 8 9


 =

[
B11 B12
B21 B22

]
.

A useful property of partitioned matrices is the

following:



Multiplying partitioned matrices Partitioned

matrices can be multiplied as though the sub-

matrices were scalars:

AB =




A11 A12 . . . A1n

A21 A22 . . . A2n
... ... . . . ...

Ai1 Ai2 . . . Ain
... ... . . . ...

Am1 Am2 . . . Amn







B11 B12 . . . B1j . . . B1p

B21 B22 . . . B2j . . . B2p
... ... . . . ... . . . ...

Bn1 Bn2 . . . Bnj . . . Bnp




is the partitioned matrix whose ijth ”entry” is

the matrix

Ai1B1j +Ai2B2j + . . .+AinBnj =
∑n

k=1 AikBkj,

provided that all the products AikBkj are de-

fined.
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Example.

[
0 1 -1
1 0 1

] 


1 2 3
4 5 6
7 8 9




=
[ [

0 1
1 0

][
1 2
4 5

]
+

[ −1
1

]
[ 7 8 ]

[
0 1
1 0

][
3
6

]
+

[ −1
1

]
[9]

]

=

[
-3 -3 -3
8 10 12

]
.

Compute this product without using a parti-

tion, and see whether you find the same result.
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Example.

A =

[
A11 A12

0 A22

]
,

where A11 is an n× n matrix, A22 is an m×m

matrix, and A12 is an n×m matrix.

a. For which choices of A11, A12, and A22 is

A invertible ?

b. If A is invertible, what is A−1 (in terms of

A11, A12, A22)?
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Solution

We are looking for an (n+m)×(n+m) matrix

B such that

BA = In+m =

[
In 0
0 Im

]
.

Let us partition B in the same way as A:

B =

[
B11 B12
B21 B22

]
,

where B11 is n×n, B22 is m×m, etc. The fact

that B is the inverse of A means that

[
B11 B12
B21 B22

] [
A11 A12

0 B22

]
=

[
In 0
0 Im

]
,

or using
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∣∣∣∣∣∣∣∣∣

B11A11 = In

B11A12 +B12A22 = 0
B21A11 = 0

B21A12 +B22A22 = Im

∣∣∣∣∣∣∣∣∣
.

We have to solve this system for the subma-
trices Bij.

1. By Equation 1, A11 must be invertible, and
B11 = A−1

11 .

2. By Equation 3, B21 = 0 (Multiply by A−1
11

form the right)

3. Equation 4 now simplifies to B22A22 =
Im. Therefore, A22 must be invertible, and
B22 = A−1

22 .

4. Lastly, Solve for B12 by Equation 2

A−1
11 A12 + B12A22 = 0



⇒ B12A22 = −A−1
11 A12

⇒ B12 = −A−1
11 A12A−1

22

So

a. A is invertible if (and only if) both A11 and

A22 are invertible (no condition is imposed on

A12).

b. If A is invertible, then its inverse is

A−1 =

[
A−1

11 −A−1
11 A12A−1

22
0 A−1

22

]
.



Verify this result for the following example:

Example. 5




1 1 1 2 3
1 2 4 5 6
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




−1

=




2 −1 2 1 0
−1 1 −3 −3 −3
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Homework.

Exercise 2.4: 5, 13, 17, 23, 27, 35
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