Applied Linear Algebra OTTO BRETSCHER

http://www.prenhall.com/bretscher

Chapter 2 Linear Transformation

Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan

September 27, 2004

2.1 Introduction to Linear Transformations and Their Inverse

See Figure 1

Encryption of a coordinate $\vec{x} = \begin{bmatrix} 5 \\ 42 \end{bmatrix}$ to \vec{y} by the following code:

 $y_1 = x_1 + 3x_2 = 131$ $y_2 = 2x_1 + 5x_2 = 220$

At the headquarter, $\vec{y} = \begin{bmatrix} 131\\220 \end{bmatrix}$ is received. We need to determine the actual \vec{x} by solve the linear system.

$$A\vec{x} = \vec{b}$$

i.e. $\begin{aligned} x_1 + & 3x_2 = 131 \\ 2x_1 + & 5x_2 = 220 \end{aligned}$

If
$$\vec{y} = \begin{bmatrix} 133\\223 \end{bmatrix}$$
 We need to solve it again by:

$$\begin{aligned} x_1 + & 3x_2 = 133\\2x_1 + & 5x_2 = 223 \end{aligned}$$

For a general formula, we need solve the system

$$\begin{array}{rrr} x_1 + & 3x_2 = y_1 \\ 2x_1 + & 5x_2 = y_2 \end{array}$$

for arbitrary constants y_1 and y_2 .

For sender: $\vec{x} \rightarrow \vec{y}$ (encoding)

For receiver: $\vec{y} \rightarrow \vec{x}$ (decoding)

$$\begin{vmatrix} x_1 + & 3x_2 = y_1 \\ 2x_1 + & 5x_2 = y_2 \end{vmatrix} \xrightarrow{-2(I)} -2(I)$$

$$\begin{vmatrix} x_1 + & 3x_2 = y_1 \\ -x_2 = & -2y_1 + y_2 \end{vmatrix} \xrightarrow{-2(I)} + (-1)$$

$$\begin{vmatrix} x_1 + & 3x_2 = y_1 \\ x_2 = & 2y_1 - y_2 \end{vmatrix} \xrightarrow{-3(II)}$$

$$\begin{vmatrix} x_1 + & 3x_2 = y_1 \\ -3(II) \\ -3(II) \end{vmatrix}$$

The decoding formula is:

$$\begin{array}{rcrr} x_1 = & -5y_1 & +3y_2 \\ x_2 = & 2y_1 & -y_2 \end{array}$$

or $\vec{x} = B\vec{y}$, where $B = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}$

Definition. We say that the matrix B is the inverse of the matrix A and write $B = A^{-1}$.

$$\vec{x} = A\vec{x}, A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
$$\vec{x} \xleftarrow{} \vec{x} = B\vec{y}, B = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}} \vec{y}$$

The coding transformation is represented as

$$\underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{\vec{y}} = \begin{bmatrix} x_1 + & 3x_2 \\ 2x_1 + & 5x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\vec{x}}$$

or succinctly, as $|\vec{y} = A\vec{x}|$.

A transformation of the form $\vec{y} = A\vec{x}$ is called a **linear transformation**.

Function: Consider two sets X and Y. A function $T: X \rightarrow Y$ is a rule that associates with each element $x \in X$ a unique element $y \in Y$.

The set X is called the *domain* and Y is called its *codomain*.

Definition. A function T from \mathbb{R}^n to \mathbb{R}^m is called a **linear transformation** if there is an $m \times n$ matrix A such that

 $T(\vec{x}) = A\vec{x}$, for all \vec{x} in \mathbb{R}^n .

Example. The linear transformation system

$$y_1 = 7x_1 + 3x_2 - 9x_3 + 8x_4$$

$$y_2 = 6x_1 + 2x_2 - 8x_3 + 7x_4$$

$$y_3 = 8x_1 + 4x_2 + 7x_4$$

(a function from \mathbb{R}^4 to \mathbb{R}^3) can be represented by the 3×4 matrix

$$A = \begin{bmatrix} 7 & 3 & -9 & 8 \\ 6 & 2 & -8 & 7 \\ 8 & 4 & 0 & 7 \end{bmatrix}$$

5

Example. The identity transformation system

$$y_1 = x_1$$
$$y_2 = x_2$$
$$\vdots$$
$$y_n = x_n$$

(a linear transformation from \mathbb{R}^n to \mathbb{R}^n whose output equals its input) is represented by $n \times n$ matrix

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

This matrix is called the **identiy matrix** and is denoted by I_n :

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ etc.}$$

6

Example. Give a geometric interpretation of the linear transformation

$$\vec{y} = A\vec{x}, \text{ where } A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}.$$

See Figure 4 (pp.45).

Fact 2.1.2 Consider a linear transformation
$$T$$

from \mathbb{R}^n to \mathbb{R}^m . Let $\vec{e_i} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow ith$

The matrix of \boldsymbol{T} can be represented as

$$A = \begin{bmatrix} | & | & | \\ T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_n}) \\ | & | & | & | \end{bmatrix}$$

Since

$$T(\vec{e}_i) = A\vec{e}_i = \begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\ | & | & | & | \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \vec{v}_i$$

8

Example. Find the inverse for the following matrix:

 $\left[\begin{array}{rrr}1&2\\3&9\end{array}\right]$

Solution

Example. Find the inverse for the following matrix: $\begin{bmatrix} 3 & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{bmatrix}$

Solution

$$\begin{bmatrix} 3 & -\frac{2}{3} & \vdots & y_{1} \\ -1 & \frac{1}{3} & \vdots & y_{2} \end{bmatrix} \div 3$$

$$\longrightarrow \begin{bmatrix} 1 & -\frac{2}{9} & \vdots & \frac{1}{3}y_{1} \\ -1 & \frac{1}{3} & \vdots & y_{2} \end{bmatrix} + (I)$$

$$\longrightarrow \begin{bmatrix} 1 & -\frac{2}{9} & \vdots & \frac{1}{3}y_{1} \\ 0 & \frac{1}{9} & \vdots & \frac{1}{3}y_{1} + y_{2} \end{bmatrix} \times 9$$

$$\longrightarrow \begin{bmatrix} 1 & -\frac{2}{9} & \vdots & \frac{1}{3}y_{1} \\ 0 & 1 & \vdots & 3y_{1} + 9y_{2} \end{bmatrix} + \frac{2}{9}(II)$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & \vdots & y_{1} + 2y_{2} \\ 0 & 1 & \vdots & 3y_{1} + 9y_{2} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 9 \end{bmatrix}$$

10

Example. Not all linear transformations are invertible. Consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

If
$$\vec{y} = \begin{bmatrix} 89\\178 \end{bmatrix}$$
, to solve the system
$$\begin{vmatrix} x_1 & +2x_2 = 89\\2x_1 & +4x_2 = 178 \end{vmatrix}$$

We discover there are infinitely many solutions

$$\left[\begin{array}{c} x_1\\ x_2 \end{array}\right] = \left[\begin{array}{c} 89-2t\\ t \end{array}\right]$$

We say that the coding matrix A are *nonin*-vertible.

Homework. Exercises 2.1: 4, 5, 7, 10, 12, 15

2.2 Linear Transformation in Geometry

Example. 1 Consider a linear transformation system $T(\vec{x}) = A\vec{x}$ from R^n to R^m .

a. $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$

In words, the transformation of the sum of two vectors equals the sum of the transformation.

b.
$$T(k\vec{v}) = kT(\vec{v})$$

In words, the transformation of a scalar multiple of a vector is the scalar multiple of the transform.

See Figure 1 (pp.50).

Fact A transformation T from \mathbb{R}^n to \mathbb{R}^m is linear iff

a. $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$, for all \vec{v} , \vec{w} in R^n , and

b. $T(k\vec{v}) = kT(\vec{v})$, for all \vec{v} in R^n and all scalars k.

Proof

Idea: To prove the inverse, we must show a matrix A such that $T(\vec{x}) = A\vec{x}$. Consider a transformation T from R^n to R^m that satisfy (a) and (b), find A.

Example. 2 Consider a linear transformation T from R^2 to R^2 . The vectors $T\vec{e_1}$ and $T\vec{e_2}$ are sketched in Figure 2. Sketch the **image** of the unit square under this transformation.

See Figure 2. (pp. 51)

Example. 3 Consider a linear transformation T from R^2 to R^2 such that $T(\vec{v}_1) = \frac{1}{2}\vec{v}_1$ and $T(\vec{v}_2) = 2\vec{v}_2$, for the vectors \vec{v}_1 and \vec{v}_2 in Figure 5. On the same axes, sketch $T(\vec{x})$, for the given vector \vec{x} .

See Figure 5. (pp. 52)

[Rotation]

Example. 4 Let T be the counterclockwise rotation through an angle α .

a. Draw sketches to illustrate that T is a linear transformation.

b. Find the matrix of T.

Example. 5 *Give a geometric interpretation of the linear transformation.*

$$T(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \vec{x}$$

Rotation-dilations A matrix with this form

$$\left[\begin{array}{cc}a & -b\\b & a\end{array}\right]$$

denotes a counterclockwise rotation through the anle α followed by a dilation by the factor r where $\tan(\alpha) = \frac{b}{a}$ and $r = \sqrt{a^2 + b^2}$. Geometrically,

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \cos \alpha \\ r \sin \alpha \end{bmatrix}$$

[Shears]

Example. 6 Consider the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \vec{x}$$

To understand this transformation, sketch the image of the **unit square**.

Solution The transformation $T(\vec{x}) = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \vec{x}$ is called a *shear* parallel to the x_1 -axis.

Definition. Shear Let L be a line in \mathbb{R}^2 . A linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 is called a shear parallel to L if

a. $T(\vec{v}) = \vec{v}$, for all vectors \vec{v} on L, and

b. $T(\vec{v}) - \vec{v}$ is parallel to L for all vectors $\vec{x} \in \mathbb{R}^2$.

Example. 7 Consider two perpendicular vectors \vec{u} and \vec{w} in R^2 . Show that the transformation

 $T(\vec{x}) = \vec{x} + (\vec{u} \cdot \bar{x})\vec{w}$

is a shear parallel to the line L spanned by \vec{w} .

Consider a line L in R^2 . For any vector \vec{v} in R^2 , there is a unique vector \vec{w} on L such that $\vec{v} - \vec{w}$ is perpendicular to L.

How can we generalize the idea of an orthogonal projection to lines in R^n ?

18

Definition. orthogonal projection Let *L* be a line in \mathbb{R}^n consisting of all scalar multiples of some unit vector \vec{u} . For any vector \vec{v} in \mathbb{R}^n there is a unique vector \vec{w} on *L* such that $\vec{v} - \vec{w}$ is perpendicular to *L*, namely, $\vec{w} = (\vec{u} \cdot \vec{v})\vec{u}$. This vector \vec{w} is called the orthogonal projection of \vec{v} onto *L*:

 $proj_L(\vec{v}) = (\vec{u} \cdot \vec{v})\vec{u}$

The transformation $proj_L$ from \mathbb{R}^n to \mathbb{R}^n is linear.

Definition. Let *L* be a line in \mathbb{R}^n , the vector $2(proj_L \vec{v}) - \vec{v}$ is called the **reflection** of \vec{v} in *L*:

 $ref_L(\vec{v}) = 2(proj_L\vec{v}) - \vec{v} = 2(\vec{u}\cdot\vec{v})\vec{u} - \vec{v}$

where \vec{u} is a unit vector on L.

Homework. Exercise 2.2: 1, 9, 13, 17, 27

2.3 The Inverse Of a Linear Transformation

Definition. A function T from X to Y is called invertible if the equation T(x)=y has a unique solution x in X for each y in Y.

Denote the inverse of T as T^{-1} from Y to X, and write

 $T^{-1}(y) = ($ the unique x in X such that T(x) = y)

Note

 $T^{-1}(T(x)) = x$, for all x in X, and

 $T(T^{-1}(y)) = y$, for all y in Y.

If a function T is invertible, then so is T^{-1} ,

$$(T^{-1})^{-1} = T$$

21

Consider the case of a *linear transformation* from R^n to R^m given by $\vec{y} = A\vec{x}$ where A is an $m \times n$ matrix, the transformation is invertible if the linear system $A\vec{x} = \vec{y}$ has a unique solution.

- 1. Case 1: m < n The system $A\vec{x} = \vec{y}$ has either no solutions or infinitely many solutions, for any \vec{y} in R^m . Therefore $\vec{y} = A\vec{x}$ is noninvertible.
- 2. Case 2: m = n The system $A\vec{x} = \vec{y}$ has a unique solution iff $rref(A) = I_n$, or equivalently, if rank(A) = n.
- 3. Case 3: m > n The transformation $\vec{y} = A\vec{x}$ is noninvertible, because we can find a vector \vec{y} in R^m such that the system $A\vec{x} = \vec{y}$ is inconsistent.

Definition. Invertible Matrix A matrix A is called invertible if the linear transformation $\vec{y} = A\vec{x}$ is invertible. The matrix of inverse transformation is denoted by A^{-1} . If the transformation $\vec{y} = A\vec{x}$ is invertible. its inverse is $\vec{x} = A^{-1}\vec{y}$.

Fact

An $m \times n$ matrix A is invertible if and only if

1. A is a square matrix (i.e.,m=n), and

2.
$$rref(A) = I_n$$
.

Example. Is the matrix A invertible?

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

Solution

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \xrightarrow{-4(I)} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \xrightarrow{-} \div (-3)$$
$$\begin{bmatrix} 1 & 2 & 3 \\ -7(I) \end{bmatrix} \xrightarrow{-7(I)} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -6 & -12 \end{bmatrix} \xrightarrow{-2(II)} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

A fails to be invertible, since $rref(A) \neq I_3$.

Fact Let A be an $n \times n$ matrix.

- 1. Consider a vector \vec{b} in R^n . If A is invertible, then the system $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$. If A is noninvertible, then the system $A\vec{x} = \vec{b}$ has infinitely many solutions or none.
- 2. Consider the special case when $\vec{b} = \vec{0}$. The system $A\vec{x} = \vec{0}$. has $\vec{x} = \vec{0}$ as a solution. If A is invertible, then this is the only solution. If A is noninvertible, then there are infinitely many other solutions.

If a matrix A is invertible, how can we find the inverse matrix A^{-1} ?

Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

٠

or, equivalently, the linear transformation

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + x_3 \\ 2x_1 + 3x_2 + 2x_3 \\ 3x_1 + 8x_2 + 2x_3 \end{bmatrix}.$$

To find the inverse transformation, we solve this system for input variables x_1 , x_2 , x_3 :

$$\begin{vmatrix} x_{1} + x_{2} + x_{3} = y_{1} \\ 2x_{1} + 3x_{2} + 2x_{3} = y_{2} \\ 3x_{1} + 8x_{2} + 2x_{3} = y_{1} \\ x_{2} + 2x_{3} = y_{1} \\ x_{2} + 2x_{3} = -2y_{1} + y_{2} \\ 5x_{2} - 3x_{3} = -3y_{1} + y_{2} \\ -5(II) \end{vmatrix} \begin{vmatrix} -(II) \\ -3(I) \\ -3(I) \end{vmatrix}$$

$$\begin{vmatrix} x_{1} + x_{2} + x_{3} = y_{1} \\ x_{2} + x_{3} = -2y_{1} + y_{2} \\ -x_{3} = -2y_{1} + y_{2} \\ x_{3} = -7y_{1} + 5y_{2} - y_{3} \end{vmatrix} \begin{vmatrix} -(III) \\ -$$

We have found the inverse transformation; its matrix is

$$B = A^{-1} = \begin{bmatrix} 10 & -6 & 1 \\ -2 & 1 & 0 \\ -7 & 5 & -1 \end{bmatrix}.$$

27

We can write the preceding computations in matrix form:

 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 3 & 8 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{-2(I)} \xrightarrow{-2(I)} \xrightarrow{-3(I)}$ $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 5 & -1 & -3 & 0 & 1 \end{bmatrix} \xrightarrow{-(II)} \xrightarrow{-5(II)}$ $\begin{bmatrix} 1 & 0 & 1 & 3 & -1 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & -1 & 7 & -5 & 1 \end{bmatrix} \xrightarrow{-(III)} \xrightarrow{+(-1)}$ $\begin{bmatrix} 1 & 0 & 1 & 3 & -1 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -7 & 5 & -1 \end{bmatrix} \xrightarrow{-(III)} \xrightarrow{-(III)}$ $\begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -7 & 5 & -1 \end{bmatrix} \xrightarrow{-(III)}$

This process can be described succinctly as follows:

Find the inverse of a matrix

To find the inverse of an $n \times n$ matrix A, from the $n \times (2n)$ matrix $\begin{bmatrix} A & : & I_n \end{bmatrix}$ and compute rref $\begin{bmatrix} A & : & I_n \end{bmatrix}$.

- If rref $[A:I_n]$ is of the form $[I_n:B]$, then A is invertible, and $A^{-1} = B$.
- If rref [A:In] is of another form (i.e., its left half fails to be In), then A is not invertible. (Note that the left half of rref [A:In] is rref(A).)

The inverse of a 2×2 matrix is particularly easy to find.

Inverse and determinant of a 2×2 matrix

1. The 2 × 2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if (and only if) $ad - bc \neq 0$. Quantity ad - bc is called the determinant of A, written det(A):

$$det(A) = det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.$$

2. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible, then
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\text{ad-bc}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
Compare this with Exercise 2.1.13.

Homework. Exercise 2.3 21-27, 41

2.4 MATRIX PRODUCTS

The composite of two functions: y = sin(x)and z = cos(y) is z = cos(sin(x)).

Consider two transformation systems:

$$\vec{y} = A\vec{x}$$
, with $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$
 $\vec{z} = B\vec{y}$, with $B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$

The composite of the two transformation systems is

$$\vec{z} = B(A\vec{x})$$

Question: Is $\vec{z} = T(\vec{x})$ linear? If so, what's the matrix?

(a) Find the matrix for the composite:

 $z_1 = 6(x_1 + 2x_2) + 7(3x_1 + 5x_2)$ = $(6 \cdot 1 + 7 \cdot 3)x_1 + (6 \cdot 2 + 7 \cdot 5)x_2$ = $27x_1 + 47x_2$

$$z_{2} = 8(x_{1} + 2x_{2}) + 9(3x_{1} + 5x_{2})$$

= $(8 \cdot 1 + 9 \cdot 3)x_{1} + (8 \cdot 2 + 9 \cdot 5)x_{2}$
= $35x_{1} + 61x_{2}$

This shows the composite is linear with matrix $\begin{bmatrix} 6 \cdot 1 + 7 \cdot 3 & 6 \cdot 2 + 7 \cdot 5 \\ 8 \cdot 1 + 9 \cdot 3 & 8 \cdot 2 + 9 \cdot 5 \end{bmatrix} = \begin{bmatrix} 27 & 47 \\ 35 & 61 \end{bmatrix}$

(b)Use Fact to show the transformation $T(\vec{x}) = B(A\vec{x})$ is linear:

 $T(\vec{v} + \vec{w}) = B(A(\vec{v} + \vec{w})) = B(A\vec{v} + A\vec{w}) = B(A\vec{v}) + B(A\vec{w}) = T(\vec{v}) + T(\vec{w})$

 $T(k\vec{v}) = B(A(k\vec{v})) = B(k(A\vec{v})) = k(B(A\vec{v})) = kT(\vec{v})$

Once we know that T is linear, we can find its matrix by computing the vectors: $T(\vec{e_1})$ and $T(\vec{e_2})$:

$$T(\vec{e_1}) = B(A(\vec{e_1})) = B(\text{first column of } A) = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 27 \\ 35 \end{bmatrix}$$

 $T(\vec{e}_2) = B(A(\vec{e}_1)) = B(\text{second column of } A) = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 47 \\ 61 \end{bmatrix}$

The matrix of $T(\vec{x}) = B(A\vec{x}) = BA(\vec{x})$:

$$= \begin{bmatrix} | & | \\ T(\vec{e}_1) & T(\vec{e}_2) \\ | & | \end{bmatrix} = \begin{bmatrix} 27 & 47 \\ 35 & 61 \end{bmatrix}$$

33

Definition. Matrix multiplication

- 1. Let B be an $m \times n$ matrix and A a $q \times p$ matrix. The product BA is defined if (and only if) n = q.
- 2. If B is an $m \times n$ matrix and A an $n \times p$ matrix, then the product BA is defined as the matrix of the linear transformation $T(\vec{x}) = B(A\vec{x})$. This means that $T(\vec{x}) = B(A\vec{x}) = (BA)\vec{x}$, for all \vec{x} in R^p . The product BA is an $m \times p$ matrix.

Let B be an $m \times n$ matrix and A an $n \times p$ matrix. Let's think about the columns of the matrix BA:

(*i*th columns of BA) = $(BA)\vec{e_i}$ = $B(A\vec{e_i})$ = B(ith column of A).

If we denote the columns of A by $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$, we can write

$$BA = B \underbrace{\begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_p \\ | & | & | & | \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} | & | & | \\ B\vec{v}_1 & B\vec{v}_2 & \dots & B\vec{v}_p \\ | & | & | & | \end{bmatrix}}_{A}$$

The matrix product, column by column

Let *B* be an $m \times n$ matrix and *A* an $n \times p$ matrix with columns $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$. Then, the product *BA* is

$$BA = B \begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_p \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ B\vec{v}_1 & B\vec{v}_2 & \dots & B\vec{v}_p \\ | & | & | & | \end{bmatrix}.$$

To find BA, we can multiply B with the columns of A and combine the resulting vectors.

Fact Matrix multiplication is noncommutative: $AB \neq BA$, in general. However, at times it does happen that AB = BA; then, we say that the matrices A and B commute.

The matrix product, entry by entry

Let B be an $m \times n$ matrix and A an $n \times p$ matrix. The *ij*th entry of BA is the dot product of the *i*th row of B and the *j*th column of A.

 $\begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \dots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{bmatrix}$

is the $m \times p$ matrix whose ijth entry is

 $b_{i1}a_{1j} + b_{i2}a_{2j} + \ldots + b_{in}a_{nj} = \sum_{k=1}^{n} b_{ik}a_{kj}.$

Example. $\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} =$

 $\begin{bmatrix} 6 \cdot 1 + 7 \cdot 3 & 6 \cdot 2 + 7 \cdot 5 \\ 8 \cdot 1 + 9 \cdot 3 & 8 \cdot 2 + 9 \cdot 5 \end{bmatrix} = \begin{bmatrix} 27 & 47 \\ 35 & 61 \end{bmatrix}.$

We have done these computations before. (where?)

Matrix Algebra

Fact For an invertible $n \times n$ matrix A.

$$AA^{-1} = I_n$$
 and $A^{-1}A = I_n$.

Fact For an $m \times n$ matrix A.

$$AI_n = I_m A = A.$$

Fact Matrix multiplication is associative

$$(AB)C = A(BC).$$

We can write simply ABC for the product (AB)C = A(BC).

Proof (a)
$$(AB)C = (AB)[\vec{v_1} \quad \vec{v_2} \quad \cdots \quad \vec{v_q}]$$

= $[(AB)\vec{v_1} \quad (AB)\vec{v_2} \quad \cdots \quad (AB)\vec{v_q}]$

and

$$A(BC) = A[B\vec{v}_1 \ B\vec{v}_2 \ \cdots \ B\vec{v}_q]$$
$$= [A(B\vec{v}_1) \ A(B\vec{v}_2) \ \cdots \ A(B\vec{v}_q)]$$

Since $(AB)\vec{v}_i = A(B\vec{v}_i)$, by definition of the matrix product, we find that (AB)C = A(BC).

Proof (b) Consider two linear transformations $T(\vec{x}) = ((AB)C)\vec{x}$

and

$$L(\vec{x}) = (A(BC))\vec{x}$$

are identical because,

 $T(\vec{x}) = ((AB)C)\vec{x} = (AB)(C\vec{x}) = A(B(C\vec{x}))$ and

$$L(\vec{x}) = (A(BC))\vec{x} = A((BC)\vec{x}) = A(B(C\vec{x}))$$

If A and B are invertible $n \times n$ matrices, is BA invertible?

$$\vec{y} = BA\vec{x}$$

multiply both sides by B^{-1}

$$B^{-1}\vec{y} = B^{-1}BA\vec{x} = I_nA\vec{x} = A\vec{x}$$

next, multiply both sides by A^{-1}

$$A^{-1}B^{-1}\vec{y} = A^{-1}A\vec{x} = I_n\vec{x} = \vec{x}$$

This computation shows that the linear transformation is invertible since

$$\vec{x} = A^{-1}B^{-1}\vec{y}$$

Fact The inverse of a product of matrices

If A and B are invertible $n \times n$ matrices, then BA is invertible as well, and

$$(BA)^{-1} = A^{-1}B^{-1}.$$

Pay attention to the order of the matrices.

Proof Verify it by yourself.

Fact Let A and B be two $n \times n$ matrices such that

$$BA = I_n.$$

Then,

a. A and B are both invertible. b. $A^{-1} = B$ and $B^{-1} = A$, and c. $AB = I_n$.

Proof (a) To demonstrate A is invertible it suffices to show that the linear system $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$.

$$BA\vec{x} = B\vec{0} = \vec{0}$$

(b) $B = A^{-1}$ since

$$(BA)A^{-1} = (I_n)A^{-1} = A^{-1}$$

and

$$B^{-1} = (A^{-1})^{-1} = A$$

(c) $AB = AA^{-1} = I_n$

41

Example.
$$B = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 is the inverse of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

it suffices to verify that $BA = I_2$:

$$\mathsf{BA} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$= \frac{1}{ad-bc} \begin{bmatrix} ad-bc & bd-bd \\ ac-ac & ad-bc \end{bmatrix} = I_2.$$

Example.

Suppose A, B and C are three $n \times n$ matrices and $ABC = I_n$. Show that B is invertible, and express B^{-1} in term of A and C.

Solution

Write $ABC = (AB)C = I_n$. We have $C(AB) = I_n$. Since matrix multiplication is associative, we can write $(CA)B = I_n$. We conclude that B is invertible, and $B^{-1} = CA$.

Distributive property for matrices

Fact If A, B are $n \times n$, and C, D are $n \times p$ matrices, then

$$A(C+D) = AC + AD$$

and

$$(A+B)C = AC + BC.$$

Fact If A is an $m \times n$ matrix, B an $n \times p$ matrix, and k a scalar, then

$$(kA)B = A(kB) = k(AB).$$

Partitioned Matrices

It is sometimes useful to break a large matrix down into smaller submatrices by slicing it up with horizontal or vertical lines that go all the way through the matrix.

For example, we can think of the 4×4 matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 8 & 7 & 6 \\ 5 & 4 & 3 & 2 \end{bmatrix}$$

as a 2×2 matrix whose "entries" are four 2×2 matrices:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \hline 9 & 8 & 7 & 6 \\ 5 & 4 & 3 & 2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

44

with
$$A_{11} = \begin{bmatrix} 1 & 2 \\ 5 & 7 \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} 3 & 4 \\ 7 & 8 \end{bmatrix}$, etc.

The submatrices in such a partition need not be of equal size; for example, we could have

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \hline 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

A useful property of partitioned matrices is the following:

Multiplying partitioned matrices Partitioned matrices can be multiplied as though the submatrices were scalars:

AB =

[$-A_{11}$	A_{12}		A_{1n}]						
	A_{21}	A_{22}	•••	A_{2n}	$\begin{bmatrix} B_{11} \end{bmatrix}$	B_{12}		B_{1j}		B_{1p}
	:	:	· · .	:	B ₂₁	B_{22}	•••	B_{2j}	• • •	B_{2p}
	A_{i1}	A_{i2}	•••	A_{in}	:	:	· · .	:	۰.	:
	:	÷	· · .	:	B_{n1}	B_{n2}	•••	B_{nj}	• • •	B_{np}
	A_{m1}	A_{m2}	•••	A_{mn}	L			-		

is the partitioned matrix whose ijth "entry" is the matrix

 $A_{i1}B_{1j} + A_{i2}B_{2j} + \ldots + A_{in}B_{nj} = \sum_{k=1}^{n} A_{ik}B_{kj}$

provided that all the products $A_{ik}B_{kj}$ are defined.

Example.

$$\begin{bmatrix} 0 & 1 & | & -1 \\ 1 & 0 & | & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & | & 3 \\ 4 & 5 & | & 6 \\ \hline 7 & 8 & | & 9 \end{bmatrix}$$
$$= \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 7 & 8 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 9 \end{bmatrix} \begin{bmatrix} -3 & -3 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} -3 \\ 12 \end{bmatrix}.$$

Compute this product without using a partition, and see whether you find the same result. Example.

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right],$$

where A_{11} is an $n \times n$ matrix, A_{22} is an $m \times m$ matrix, and A_{12} is an $n \times m$ matrix.

a. For which choices of A_{11} , A_{12} , and A_{22} is A invertible ?

b. If A is invertible, what is A^{-1} (in terms of A_{11}, A_{12}, A_{22})?

Solution

We are looking for an $(n+m) \times (n+m)$ matrix *B* such that

$$BA = I_{n+m} = \left[\begin{array}{cc} I_n & 0\\ 0 & I_m \end{array} \right].$$

Let us partition B in the same way as A:

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right],$$

where B_{11} is $n \times n$, B_{22} is $m \times m$, etc. The fact that B is the inverse of A means that

$$\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ 0 & B_{22} \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ 0 & I_m \end{bmatrix},$$

or using

$$B_{11}A_{11} = I_n$$

$$B_{11}A_{12} + B_{12}A_{22} = 0$$

$$B_{21}A_{11} = 0$$

$$B_{21}A_{12} + B_{22}A_{22} = I_m$$

We have to solve this system for the submatrices B_{ij} .

- 1. By Equation 1, A_{11} must be invertible, and $B_{11} = A_{11}^{-1}$.
- 2. By Equation 3, $B_{21} = 0$ (Multiply by A_{11}^{-1} form the right)
- 3. Equation 4 now simplifies to $B_{22}A_{22} = I_m$. Therefore, A_{22} must be invertible, and $B_{22} = A_{22}^{-1}$.
- 4. Lastly, Solve for B_{12} by Equation 2 $A_{11}^{-1}A_{12} + B_{12}A_{22} = 0$

$$\Rightarrow B_{12}A_{22} = -A_{11}^{-1}A_{12}$$
$$\Rightarrow B_{12} = -A_{11}^{-1}A_{12}A_{22}^{-1}$$

So

a. A is invertible if (and only if) both A_{11} and A_{22} are invertible (no condition is imposed on A_{12}).

b. If A is invertible, then its inverse is

$$A^{-1} = \begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix}$$

Verify this result for the following example:

Example. 5

Homework.

Exercise 2.4: 5, 13, 17, 23, 27, 35