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1.1 Introduction to Linear Systems
∣∣∣∣∣∣

x +2y +3z = 39
x +3y +2z = 34

3x +2y +z = 26

∣∣∣∣∣∣
=⇒

∣∣∣∣∣∣
x = . . .

y = . . .
z = . . .

∣∣∣∣∣∣

−→

∣∣∣∣∣∣
x +2y +3z = 39
x +3y +2z = 34

3x +2y +z = 26

∣∣∣∣∣∣
−(I)

−→

∣∣∣∣∣∣
x +2y +3z = 39

y −z = −5
3x +2y +z = 26

∣∣∣∣∣∣ −3(I)

−→

∣∣∣∣∣∣
x +2y +3z = 39

y −z = −5
−4y −8z = −91

∣∣∣∣∣∣
−2(II)

+4(II)

−→

∣∣∣∣∣∣
x +5z = 49

y −z = −5
−12z = −111

∣∣∣∣∣∣ ÷(−12)

−→

∣∣∣∣∣∣
x +5z = 49

y −z = −5
z = 9.25

∣∣∣∣∣∣
−5(III)
+(III)

−→

∣∣∣∣∣∣
x = 2.75

y = 4.25
z = 9.25

∣∣∣∣∣∣
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Geometric Interpretation

See Figure 1-3

Example. A System with Infinitely Many

Solutions
∣∣∣∣∣∣
2x + 4y + 6z = 0
4x + 5y + 6z = 3
7x + 8y + 9z = 6

∣∣∣∣∣∣
÷2
−→

∣∣∣∣∣∣
x +2y + 3z = 0

4x +5y + 6z = 3
7x +8y + 9z = 6

∣∣∣∣∣∣
−→
−4(I)
−7(I)

∣∣∣∣∣∣
x + 2y + 3z = 0
−3y − 6z = 3
−6y − 12z = 6

∣∣∣∣∣∣
−→

÷(−3)

∣∣∣∣∣∣
x + 2y +3z = 0

y +2z = −1
−6y −12z = 6

∣∣∣∣∣∣
−2(II)
−→

+6(II)

∣∣∣∣∣∣
x −z = 2

y + 2z = −1
0 = 0

∣∣∣∣∣∣
−→

∣∣∣∣
x −z = 2

y + 2z = −1

∣∣∣∣

Example. A System without Solutions
∣∣∣∣∣∣

x + 2y + 3z = 0
4x + 5y + 6z = 3
7x + 8y + 9z = 0

∣∣∣∣∣∣
−→

∣∣∣∣∣∣
x −z = 2

y + 2z = −1
0 = −6

∣∣∣∣∣∣
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1.2 Matrices and Gauss-Jordan Elimina-

tion

∣∣∣∣∣∣∣

2x + 8y + 4z = 2
2x + 5y + z = 5
4x + 10y − z = 1

∣∣∣∣∣∣∣

Matrix →



2 8 4 2
2 5 1 5
4 10 −1 1




Definition. Coefficient matrix




2 8 4
2 5 1
4 10 −1




Definition. Augmented matrix




2 8 4 ... 2
2 5 1 ... 5
4 10 −1 ... 1



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Definition. Entry, Row, Column,

Definition. A matrix with only one column is

called a column vector, or simply a vector.

The entries of a vector are called its compo-

nents. The set of all column vectors with n

components is denoted by Rn.

Example.




1
2
9
1


 is a (column) vector in R4.

Example.
[
1 5 5 3 7

]
is a row vector in

R5.






2 8 4 ... 2
2 5 1 ... 5
4 10 −1 ... 1



÷2

↓



1 4 2 ... 1
2 5 1 ... 5
4 10 −1 ... 1


 −2(I)
−4(I)

↓



1 4 2 ... 1
0 −3 −3 ... 3
0 −6 −9 ... −3


 ÷(−3)

↓



1 4 2 ... 1
0 1 1 ... −1
0 −6 −9 ... −3



−4(II)

+6(II)

↓
4






1 0 −2 ... 5
0 1 1 ... −1
0 0 −3 ... −9



÷(−3)

↓



1 0 −2 ... 5
0 1 1 ... −1
0 0 1 ... 3




+2(III)
−(III)

↓



1 0 0 ... 11
0 1 0 ... −4
0 0 1 ... 3




The solution is represented as a vector:




x
y
z


 =




11
−4
3




5



Gauss-Jordan Elimination

Step 0: row index=0, column index=0.

Step 1: If the cursor entry is 0, swap the cursor

row with some row below to make the cursor

entry nonzero.

Step 2: Divide the cursor row by the cursor

entry to make the cursor entry equal to 1.

Step 3: Eliminate all other entries in the cursor

column by subtracting suitable multiples of the

cursor row from the other rows.

Step 4: Move the cursor down diagonally (i.e.,

down one row and over one column). If the

new cursor entry and all entries below are zero,

move the cursor to the next column (remaining

in the same row). Repeat this step if necessary.

Then return to step 1.
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Definition. We say that the matrix is in re-
duced row-echelon form, or rref for short.
We write

E=rref(M)

Definition. A matrix is in reduced row-echelon

form if it satisfies all of the following condi-
tions:

1. If a row has nonzero entries, then the first
nonzero entry is 1, called the leading 1 in
this row.

2. If a column contains a leading 1, then all
other entries in that column are zero.

3. If a row contains a leading 1, then each
row above contains a leading 1 further to
the left.
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The method of solving a linear system by Gauss-

Jordan elimination is called an algorithm.

An algorithm can be defined as “a finite pro-

cedure, written in a fixed symbolic vocabulary,

governed by precise instructions, moving in dis-

crete steps, 1, 2, 3, . . . , whose execution re-

quires no insight, cleverness, intuition, intelli-

gence, or perspicuity, and that sooner or later

comes to an end.”

Example.∣∣∣∣∣∣∣∣∣

x3 − x4 − x5 = 4
2x1 + 4x2 + 2x3 + 4x4 + 2x5 = 4
2x1 + 4x2 + 3x3 + 3x4 + 3x5 = 4
3x1 + 6x2 + 6x3 + 3x4 + 6x5 = 6

∣∣∣∣∣∣∣∣∣

Homework. Exercises 1.2: 10, 11, 20, 34,

35
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1.3 On the Solutions of Linear Systems

A linear system has either

• no solution (inconsistent) iff its rref con-

tains a row of the form

[ 0 0 0 ... 0 ...1]

representing the equation 0=1.

• exactly one solution if the system is con-

sistent and all variables are leading, or

• infinitely many solutions if the system is

consistent and there are nonleading vari-

ables.
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Example. The reduced row-echelon forms of

the augmented matrices of three systems are

given. How many solutions are there in each

case?

a.




1 2 0 ... 1
0 0 1 ... 2
0 0 0 ... 0




b.




1 0 0 ... 1
0 1 0 ... 2
0 0 1 ... 3




c.




1 2 0 ... 1
0 0 1 ... 2
0 0 0 ... 1
0 0 0 ... 0




Definition. The rank of a matrix A is the

number of leading 1’s in rref(A).
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Example. rank




1 2 3
4 5 6
7 8 9


 = 2, since

rref




1 2 3
4 5 6
7 8 9


 =




1 0 −1
0 1 2
0 0 0




Example. Consider a system of m linear equa-
tions with n unkowns. Its coefficient matrix A
has the size m× n.

1. rank(A) ≤ m and rank(A) ≤ n.

2. If rank(A)=m, then the system is consis-
tent.

3. If rank(A)=n, then the system has at most
one solution.

4. If rank(A)< n, then the system has either
infinitely many solutions, or none.
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Example. Consider a linear system with fewer

equations than unknowns. How many solutions

could this system have?

Solution

Example. Consider a linear system of n equa-

tions with n unknowns. When does this system

have a unique solution?

Solution
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The Vector Form and the Matrix Form of a

Linear System

∣∣∣∣∣
3x + y = 7
x + 2y = 4

∣∣∣∣∣

We can write the system as:

[
3x + y
x + 2y

]
=

[
7
4

]

or

[
3x
x

]
+

[
y

2y

]
=

[
7
4

]

or

x

[
3
1

]
+ y

[
1
2

]
=

[
7
4

]
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See Figure 4 (pp.28).

Consider the general linear system

∣∣∣∣∣∣∣∣∣

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
... ... ...
am1x1 + am2x2 + · · ·+ amnxn = bm

∣∣∣∣∣∣∣∣∣

We can write




a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
... ...
am1x1 + am2x2 + · · ·+ amnxn


 =




b1
b2
...
bm




or

x1




a11

a21
...
am1


 + x2




a12

a22
...
am2


 + · · ·+ xn




a1n

a2n
...
amn


 =




b1
b2
...
bm




↑ ↑ ↑ ↑

~v1 ~v2 ~vn ~b
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Definition. Linear Combinations

A vector ~b in Rm is called a linear combination

of the vectors ~v1, ~v2, . . . , ~vn in Rm if there are

scalars x1, x2, . . . , xn such that

~b = x1~v1 + x2~v2 + . . . + xn~vn

Definition. The product A~x

If the column vectors of an m×n matrix A are

~v1, ~v2, . . . , ~vn, and ~x is a vector in Rn, then

the product A~x is defined as

A~x =



| | |
~v1 ~v2 · · · ~vn

| | |







x1
x2
...
xn




= x1~v1 + x2~v2 + . . . + xn~vn.

In words, A~x is the linear combination of the

columns of A with the components of ~x as

coefficients.
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Example.

[
1 0 −1
1 2 3

] 


3
1
2




= 3

[
1
1

]
+ 1

[
0
2

]
+ 2

[
−1
3

]
=

[
1

11

]

Example. D =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 and ~x =




x1
x2
x3
x4




find D~x

D~x =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







x1
x2
x3
x4


 =




x1
x2
x3
x4




= x1




1
0
0
0


 + x2




0
1
0
0


 + x3




0
0
1
0


 + x4




0
0
0
1



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Example. Represent the system in matrix form

A~x = ~b.

∣∣∣∣∣
2x1 − 3x2 + 5x3 = 7
9x1 + 4x2 − 6x3 = 8

∣∣∣∣∣

[
2 −3 5
9 4 −6

] 


x1
x2
x3


 =

[
7
8

]
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For an m× n matrix A, two vectors ~x and ~y in

Rn, and a scalar k,

1. A(~x + ~y) = A~x + A~y

2. A(k~x) = k(A~x)
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If ~x is a vector in Rn and A is an m× n matrix

with row vectors ~w1, ~w2, . . . , ~wm, then

A~x =




− ~w1 −
− ~w2 −

...
− ~wm −


 ~x =




~w1 · ~x
~w2 · ~x

...
~wm · ~x




(That is, the ith component of A~x is the dot

product of ~wi and ~x.)

Example.

[
1 0 −1
1 2 3

] 


3
1
2




=

[
1 · 3 + 0 · 1+ (−1) · 2
1 · 3 + 2 · 1+ 3 · 2

]
=

[
1

11

]
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Example.

[
1 2
3 4

] [
7

11

]

= 7

[
1
3

]
+ 11

[
2
4

]
=

[
29
65

]

or

=

[
1 · 7 + 2 · 11
3 · 7 + 4 · 11

]
=

[
29
65

]
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Definition. The summation of two matrices

of the same size is defined entry by entry.




a11 · · · a1n
... ...

am1 · · · amn


 +




b11 · · · b1n
... ...

bm1 · · · bmn




=




a11 + b11 · · · a1n + b1n
... ...

am1 + bm1 · · · amn + bmn




Definition. The product of a scalar k with

an m× n matrix is defined entry by entry.

k




a11 · · · a1n
... ...

am1 · · · amn


 =




ka11 · · · ka1n
... ...

kam1 · · · kamn



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Example.

[
1 2 3
4 5 6

]
+

[
7 3 1
5 3 −1

]
=

[
8 5 4
9 8 5

]

Example. 3

[
2 1

−1 3

]
=

[
6 3

−3 9

]

22



Example. Consider an m × n matrix A with

rank(A) < m. Find a vector ~b in Rm such that

the system A~x = ~b is inconsistent.

Solution

Let E = rref(A). We can find a vector ~c in Rm

such that the system E~x = ~c is inconsistent:

Any vector whose last component is nonzero

will do.

The key idea is to work backward through Gauss-

Jordan elimination. For example, let

A =




0 1 2
0 2 4
0 3 6
1 4 8


 , with E =




1 0 0
0 1 2
0 0 0
0 0 0


 and ~c =




1
1
1
1



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A =




0 1 2
0 2 4
0 3 6
1 4 8


 [A...~b] =




0 1 2 : 2
0 2 4 : 2
0 3 6 : 4
1 4 8 : 5




↓ ↑



1 4 8
0 2 4
0 3 6
0 1 2


 ÷(2)




1 4 8 : 5
0 2 4 : 2
0 3 6 : 4
0 1 2 : 2




↓ ↑



1 4 8
0 1 2
0 3 6
0 1 2



−4(II)

−3(II)
−(II)




1 4 8 : 5
0 1 2 : 1
0 3 6 : 4
0 1 2 : 2


 ·(2)

↓ ↑

E =




1 0 0
0 1 2
0 0 0
0 0 0


 [E...~c] =




1 0 0 : 1
0 1 2 : 1
0 0 0 : 1
0 0 0 : 1




+4(II)

+3(II)
+(II)



Homework. Exercises 1.3: 1, 5, 8, 9, 19

Write the pseudo code for Gauss-Jordan Elim-

ination.
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